Synthetic and Mechanistic Aspects of the Regioselective
Base-Mediated Reaction of Perfluoroalkyl- and
Perfluoroarylsilanes with Heterocyclic N-Oxides

David E. Stephens, Gabriel Chavez, Martin Valdes, Monica Dovalina, Hadi
Arman, and Oleg V. Larionov*

Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San
Antonio, Texas 78249, United States

General Procedures

Materials and methods: Tetrahydrofuran was distilled from sodium benzophenone
ketyl. Isoquinoline-N-oxide was purchased from Alfa Aesar, 4-phenylpyridine N-oxide,
(pentafluorophenyl)trimethylsilane, and (pentafluoroethyl)trimethylsilane were
purchased from TCI. (Trifluoromethyl)trimethylsilane was purchased from Matrix
Scientific, and (difluoromethyl)trimethylsilane was purchased from Oakwood Chemicals.
All other chemicals were used as commercially available (Sigma-Aldrich, Acros, Alfa
Aesar, Combi-Blocks, Strem). All reactions were conducted with continuous magnetic
stirring under an atmosphere of argon in oven-dried glassware. Low-temperature
experiments were conducted using a Neslab Cryotrol CB-80 cryostat. Reactions were
monitored by TLC until deemed complete using silica gel-coated glass plates (Merck
Kieselgel 60 F254). Plates were visualized under ultraviolet light (254 nm).

Purification: Column chromatography was performed using CombiFlash Rf-200
(Teledyne-Isco) automated flash chromatography system with self-packed RediSep
columns.

Characterization: 1H, 13C, 19F NMR spectra were recorded at 500 and 300 MHz (1H),
125 and 75 MHz (13C), and 282 MHz (19F) on Varian Mercury VX 300 and Agilent
Inova 500 instruments in CDCl$_3$ solutions. Chemical shifts (δ) are reported in parts per
million (ppm) from the residual solvent peak and coupling constants (J) in Hz. Proton
multiplicity is assigned using the following abbreviations: singlet (s), doublet (d), triplet (t), quartet (quart.), quintet (quint.), septet (sept.), multiplet (m), broad (br).

Infrared measurements were carried out neat on a Bruker Vector 22 FT-IR spectrometer fitted with a Specac diamond attenuated total reflectance (ATR) module.

5-Bromoquinoline 1-oxide (S1)

To a stirred solution of 5-bromoquinoline (400 mg, 1.94 mmol) in chloroform (10 mL) was added *meta*-chloroperoxybenzoic acid (620 mg, 2.52 mmol, 1.3 equiv., 70 % in H₂O). After 12 h the reaction was diluted with a saturated aqueous solution of sodium thiosulfate/sodium carbonate (20 mL, 1:1). After separating the layers the aqueous layer was extracted with dichloromethane (3 x 10 mL), the organic layers combined, dried over anhydrous sodium sulfate, and concentrated under reduced pressure to yield S1 (332 mg, 77 %) as tan solid. – m.p.: 65–67 °C. – ¹H NMR (500 MHz): 7.41 (1 H, dd, J = 6, 8 Hz), 7.61 (1 H, dd, J = 7.5, 8.5 Hz), 7.94 (1 H, dd, J = 1, 7.5 Hz), 8.12 (1 H, d, J = 8.5 Hz), 8.56 (1 H, dd, J = 0.5, 6 Hz), 8.77 (1 H, d, J = 8.5 Hz) ppm. – ¹³C NMR (125 MHz): 119.5, 121.8, 122.3, 125.9, 129.7, 130.5, 132.7, 136.2, 142.1 ppm. – IR: 1056, 1142, 1195, 1255, 1289, 1394, 1443, 1505, 1663, 2999, 3067, 3107 cm⁻¹.

4-(tert-Butylthio)-7-chloroquinoline 1-oxide (S2)

To a stirred solution of S3 (200 mg, 0.930 mmol) in ethanol (5 mL) was added sodium 2-methyl-2-propanethiolate (136 mg, 1.21 mmol, 1.3 equiv.) and the reaction heated to 50 °C for 12 h. The reaction was concentrated on Celite and purified by column chromatography [hexanes/EtOAc/Si₂O] to yield S2 (151 mg, 61 %) as colorless solid. – m.p.: 125 – 127
°C. – \(^1\)H NMR (500 MHz): 1.32 (9 H, s), 7.52 (1 H, d, \(J = 7\) Hz), 7.62 (1 H, dd, \(J = 2.5, 10\) Hz), 8.46 (1 H, d, \(J = 6.5\) Hz), 8.55 (1 H, d, \(J = 10\) Hz), 8.75 (1 H, d, \(J = 2.5\) Hz) ppm. – \(^{13}\)C NMR (125 MHz): 31.2, 49.4, 119.4, 128.2, 129.5, 129.9, 130.4, 130.6, 132.0, 135.2, 137.2, 142.1 ppm. – IR: 1134, 1183, 1242, 1345, 1459, 2900, 2971, 3097 cm\(^{-1}\). – MS (ESI): 267.9, HRMS: 268.0140, calcd: 268.0557 [M+H\(^+\)].

4,7-Dichloroquinoline 1-oxide\(^2\) (S3)

S3 was prepared according to literature procedure. – m.p.: 164–165 °C\(^3\)

– \(^1\)H NMR (500 MHz): 7.36 (1 H, d, \(J = 6.5\) Hz), 7.68 (1 H, d, \(J = 9\) Hz), 8.13 (1 H, d, \(J = 9\) Hz), 8.43 (1 H, d, \(J = 6.5\) Hz), 8.77 (1 H, s) ppm. – \(^{13}\)C NMR (125 MHz): 119.93, 121.22, 121.42, 125.60, 126.52, 126.75, 128.68, 129.85, 130.80, 135.96, 138.22, 142.33, 150.88 ppm. – IR: 829, 1091, 1291, 1367, 1412, 1555, 1609, 3025, 3094 cm\(^{-1}\).

7-Chloro-4-(isopropylthio)quinoline 1-oxide (S4)

To a stirred solution of S3 (200 mg, 0.930 mmol) in ethanol (5 mL) was added sodium 2-propanethiolate (118 mg, 1.21 mmol, 1.3 equiv.) and the reaction heated to 50 °C for 12 h. The reaction was concentrated on Celite and purified by column chromatography [hexanes/EtOAc/SiO\(_2\)] to yield S4 (168 mg, 71 %) as yellow solid. – m.p.: 50–53 °C. – \(^1\)H NMR (500 MHz): 1.41 (6 H, d, \(J = 6.5\) Hz), 3.57 (1 H, sept., \(J = 6.5\) Hz), 7.27 (1 H, s), 7.63 (1 H, dd, \(J = 2, 9\) Hz), 8.26 (1 H, d, \(J = 9\) Hz), 8.44 (1 H, d, \(J = 6.5\) Hz), 8.81 (1 H, d, \(J = 2\) Hz) ppm. – \(^{13}\)C NMR (125 MHz): 22.8, 38.0, 119.7, 121.0, 127.0, 128.2, 129.6,
134.8, 135.4, 137.3, 141.3 ppm. – IR: 1158, 1182, 1213, 1345, 1364, 1441, 1573, 2869, 2967, 3099 cm\(^{-1}\). – MS (ESI): 253.9, HRMS: 253.8814, calcd: 254.0401 [M+H\(^+\)].

8-Methoxyquinoline\(^4\) (S5)

\[
\begin{array}{c}
\text{S5} \\
\includegraphics[width=0.2\textwidth]{s5.png}
\end{array}
\]

S5 was prepared according to literature procedure.\(^4\) – \(^1\)H NMR (300 MHz): 4.06 (3 H, s), 7.05 (1 H, td, \(J = 1, 7.5\) Hz), 7.36–7.50 (3 H, m), 8.19 (1 H, td, \(J = 1, 7.5\) Hz), 8.96 (1 H, td, \(J = 1, 7.5\) Hz) ppm. – \(^{13}\)H NMR (75 MHz): 56.03, 108.18, 119.52, 121.73, 127.25, 129.34, 137.24, 138.66, 148.45, 154.58 ppm. – IR: 1076, 1219, 1440, 1501, 1615, 2838, 2938, 3054 cm\(^{-1}\).

8-Methoxyquinoline 1-oxide\(^2\) (S6)

\[
\begin{array}{c}
\text{S6} \\
\includegraphics[width=0.2\textwidth]{s6.png}
\end{array}
\]

To a stirred solution of S5 (340 mg, 2.12 mmol) in acetonitrile (1 mL) was added hydrogen peroxide (313 \(\mu\)L, 3.18 mmol, 1.5 equiv., 30% in \(\text{H}_2\text{O}\)) and phosphomolybdic acid (197 \(\mu\)L, 0.21 mmol, 1 mol %, 20% in \(\text{EtOH}\)) followed by heating the reaction to 50 °C. After 12 h the reaction was diluted with a saturate aqueous solution of ammonium chloride (2 mL) and the aqueous layer extracted with dichloromethane (3 x 5 mL). The combined organic layers were dried over anhydrous sodium sulfate, concentrated under reduced pressure, and purified by column chromatography to yield S6 (260 mg, 71%) as brown solid. – m.p.: 38–41 °C – \(^1\)H NMR (300 MHz): 3.92 (3 H, s), 6.88 (1 H, dd, \(J = 1.5, 8\) Hz), 7.20–7.40 (3 H, m), 7.96 (1 H, dd, \(J = 1.5, 8\) Hz), 8.78 (1 H, dd, \(J = 1.5, 4\) Hz) ppm. – \(^{13}\)C NMR (75 MHz): 55.84, 107.57, 119.42, 121.57, 126.72, 129.19, 136.07, 139.66, 148.89, 155.02 ppm. – IR: 910, 1090, 1232, 1378, 1467, 1504, 2858, 2954, 3037 cm\(^{-1}\).
7-Chloro-4-phenylquinolinene\(^5\) (S7)

\(\text{S7} \) was prepared according to a literature procedure.\(^5\) – \(^1\text{H NMR} \) (500 MHz): 7.30 (1 H, d, \(J = 4 \) Hz), 7.41 – 7.53 (6 H, m), 7.84 (1 H, d, \(J = 9 \) Hz), 8.19 (1 H, d, \(J = 1 \) Hz), 8.93 (1 H, d, \(J = 4 \) Hz) ppm. – \(^{13}\text{C NMR} \) (125 MHz): 121.4, 125.0, 127.3, 127.4, 128.3, 128.7, 128.8, 129.4, 135.1, 137.4, 148.3, 149.1, 150.9 ppm. – IR: 1071, 1167, 1271, 1304, 1374, 1417, 1488, 1573, 2834, 2877, 3031 \(\text{cm}^{-1}\).

5,7-Dichloro-8-methoxyquinoline\(^6\) (S8)

\(\text{S8} \) was prepared according to a literature procedure.\(^7\) – m.p.: 84 – 86 °C.

– \(^1\text{H NMR} \) (500 MHz): 4.19 (3 H, s), 7.55 (1 H, dd, \(J = 4.5, 9 \) Hz), 7.67 (1 H, s), 8.54 (1 H, dd, \(J = 1, 9 \) Hz), 9.02 (1 H, dd, \(J = 1.5, 4.5 \) Hz) ppm.

– \(^{13}\text{C NMR} \) (125 MHz): 62.2, 121.9, 126.0, 126.1, 126.4, 127.6, 133.1, 143.4, 150.8, 151.4 ppm. – IR: 1112, 1190, 1246, 1353, 1385, 1402, 1488, 2848, 2942, 3068 \(\text{cm}^{-1}\).

5-Chloro-8-methoxyquinoline\(^8\) (S9)

\(\text{S9} \) was prepared according to a literature procedure.\(^7\) – \(^1\text{H NMR} \) (500 MHz): 4.05 (3 H, s), 6.90 (1 H, d, \(J = 8.5 \) Hz), 7.46 (1 H, d, \(J = 8.5 \) Hz), 7.50 (1 H, dd, \(J = 4, 8.5 \) Hz), 8.46 (1 H, dd, \(J = 1, 8.5 \) Hz), 8.95 (1 H, dd, \(J = 1, 4 \) Hz) ppm. – \(^{13}\text{C NMR} \) (125 MHz): 55.6, 106.9, 121.5, 125.9, 126.3, 127.9, 132.2, 140.0, 149.1, 154.1 ppm. – IR: 1100, 1159, 1252, 1269, 1307, 1385, 1440, 1502, 2841, 2956, 3035 \(\text{cm}^{-1}\).
7-Chloro-4-phenylquinoline 1-oxide (S10)

To a stirred solution of S7 (400 mg, 1.67 mmol) in dichloromethane (5 mL) was added *meta*-chloroperoxybenzoic acid (748 mg, 2.17 mmol, 1.3 equiv., 50 % solution in H₂O) at 0 °C. After 12 h the reaction was diluted with a saturated aqueous solution of sodium thiosulfate/sodium carbonate (30 mL, 1:1), and the aqueous layer extracted with dichloromethane (4 x 10 mL). The combined organic layers were dried over anhydrous sodium sulfate, concentrated under reduced pressure, and purified by column chromatography to yield S10 (472 mg, 85 %) as tan solid. – m.p.: 112 – 114 °C. – ¹H NMR (500 MHz): 7.23 (1 H, d, J = 6 Hz), 7.45 – 7.55 (6 H, m), 7.88 (1 H, d, J = 9 Hz), 8.55 (1 H, d, J = 6 Hz), 8.85 (1 H, d, J = 2 Hz) ppm. – ¹³C NMR (125 MHz): 119.4, 121.5, 127.1, 128.2, 128.3, 128.8, 128.9, 129.4, 129.6, 135.6, 136.3, 136.8, 138.4, 141.6 ppm. – IR: 1001, 1083, 1152, 1208, 1301, 1373, 1442, 1551, 2992, 3032, 3103 cm⁻¹. – MS (ESI): 255.9, HRMS: 256.0550, calcd: 256.0524 [M+H⁺].

5-Chloro-8-methoxyquinoline 1-oxide (S11)

To a stirred solution of S9 (500 mg, 2.59 mmol) in dichloromethane (5 mL) was added *meta*-chloroperoxybenzoic acid (1.16 g, 3.36 mmol, 1.3 equiv., 50 % solution in H₂O) at 0 °C. After 12 h the reaction was diluted with a saturated aqueous solution of sodium thiosulfate/sodium carbonate (30 mL, 1:1), and the aqueous layer extracted with dichloromethane (4 x 10 mL). The combined organic layers were dried over anhydrous sodium sulfate, concentrated under reduced pressure, and purified by column chromatography to yield S11 (501 mg, 92 %) as brown
oil. – \(^1\)H NMR (300 MHz): 3.98 (3 H, s), 6.95 (1 H, d, \(J = 5\) Hz), 7.27–7.32 (1 H, m), 7.52 (1 H, d, \(J = 5\) Hz), 8.00 (1 H, d, \(J = 9.5\) Hz), 8.42 (1 H, d, \(J = 7\) Hz) ppm. – \(^{13}\)C NMR (125 MHz): 57.1, 110.5, 122.0, 122.2, 122.9, 128.7, 130.9, 134.8, 138.5, 152.8 ppm. – IR: 1092, 1160, 1264, 1342, 1397, 1464, 2838, 2887, 3015 cm\(^{-1}\). – MS (ESI): 210.0, HRMS: 210.0376, calcd: 210.0316 \([\text{M+H}^+]\).

Phenanthridine 5-oxide\(^2\) (S12)

According to GP1, phenanthridine (50 mg, 0.279 mmol) was reacted with hydrogen peroxide (83 \(\mu\)L, 0.837 mmol, 3 equiv., 30% in H\(_2\)O) and phosphomolybdic acid (25 \(\mu\)L, 0.005 mmol, 2 mol%, 20% in EtOH) in acetonitrile (200 \(\mu\)L). The isolated product afforded S12 (41 mg, 76%) as brown oil. – \(^1\)H NMR (500 MHz): 7.25–8.09 (5 H, m), 8.53–8.63 (2 H, m), 8.97 (1 H, d, \(J = 2\) Hz), 9.19 (1 H, d, \(J = 2\) Hz) ppm. – \(^{13}\)C NMR (125 MHz): 120.67, 122.13, 122.77, 127.06, 128.18, 128.99, 129.53, 129.71, 129.91, 130.15, 130.46, 133.83, 169.27 ppm. – IR: 1071, 1191, 1473, 1559, 1647, 3071 cm\(^{-1}\).

7-Chloro-4-methoxyquinoline\(^9\) (S13)

To a stirred solution of 4,7-dichloroquinoline (5 g, 25.51 mmol) in methanol (50 mL) was added sodium methoxide (6.88 g, 127.55 mmol, 5 equiv.). The reaction was heated at 95 °C for 12 h, then concentrated under reduced pressure, diluted with EtOAc (30 mL) and washed with H\(_2\)O (2 x 20 mL). The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure to yield S13 (4.78 g, 97 %) as colorless solid. – m.p.: 145–148 °C\(^10\) –
1H NMR (300 MHz): 3.19 (3 H, s), 6.58 (1 H, d, $J = 5.5$ Hz), 7.32 (1 H, dd, $J = 2$, 9 Hz), 7.92 (1 H, d, $J = 2$ Hz), 7.98 (1 H, d, $J = 9$ Hz), 8.62 (1 H, d, $J = 5$ Hz) ppm. – 13C NMR (75 MHz): 55.71, 100.26, 119.66, 123.36, 126.34, 127.64, 135.54, 149.45, 152.42, 162.16 ppm. – IR: 982, 1070, 1209, 1360, 1425, 1503, 1616, 2984, 3050 cm$^{-1}$.

7-Chloro-4-methoxyquinoline 1-oxide11 (S14)

To a stirred solution of S13 (1.6 g, 5.54 mmol) in acetonitrile (2.5 mL) were added hydrogen peroxide (1.7 mL, 16.62 mmol, 3 equiv., 30% in H$_2$O) and phosphomolybdic acid (1 mL, 0.118 mmol, 2 mol%, 20% in EtOH) then heated to 50 °C. After 12 h the reaction was diluted with a saturated aqueous solution of ammonium chloride (10 mL), and the aqueous layer extracted with dichloromethane (4 x 15 mL). The organic layers were combined, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and purified by column chromatography to yield S14 (1.12 g, 97%) as colorless solid. – m.p.: 145–147 °C – 1H NMR (500 MHz): 4.06 (3 H, s), 6.64 (1 H, d, $J = 7$ Hz), 7.59 (1 H, d, $J = 2$ Hz), 8.15 (1 H, d, $J = 9$ Hz), 8.46 (1 H, d, $J = 7$ Hz), 8.77 (1 H, d, $J = 2$ Hz) ppm. – 13C NMR (125 MHz): 56.34, 99.84, 119.57, 120.99, 123.39, 124.28, 129.06, 136.99, 137.88, 154.26 ppm. – IR: 1110, 1243, 1325, 1445, 2988, 3025 cm$^{-1}$.

Quinoline 1-oxide2 (2)

According to GP1, quinoline (5 g, 40.65 mmol) was reacted with hydrogen peroxide (6.1 mL, 60.97 mmol, 1.5 equiv., 30% in H$_2$O) and phosphomolybdic acid (3.7 mL, 0.406 mmol, 1 mol%, 20% in EtOH) in acetonitrile (20
mL). The crude product was purified by column chromatography to afford 2 (4.95 g, 88%) as brown solid. – m.p.: 60–62 °C12 – 1H NMR (300 MHz): 7.29 (1 H, dd, \(J = 6, 8 \) Hz), 7.64 (1 H, dt, \(J = 1, 7 \) Hz), 7.72–7.79 (2 H, m), 7.86 (1 H, dd, \(J = 1.5, 8 \) Hz), 8.52 (1 H, dd, \(J = 1, 6 \) Hz) ppm. – 13C NMR: 119.81, 120.96, 125.87, 128.12, 128.76, 130.41, 130.50, 135.60 ppm. – IR: 1157, 1311, 1452, 1554, 2931, 2995, 3025 cm−1.
Crystal Structure of 4-(tert-Butylthio)-7-chloroquinoline 1-oxide (S2)

Bond precision: $\text{C-C} = 0.0023 \text{ Å}$
Wavelength=0.71073

Cell:
- $a=9.1435(17)$ Å
- $b=6.0132(11)$ Å
- $c=23.209(5)$ Å
- $\alpha=90^\circ$
- $\beta=90.530(3)^\circ$
- $\gamma=90^\circ$

Temperature: 98 K

<table>
<thead>
<tr>
<th></th>
<th>Calculated</th>
<th>Reported</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume</td>
<td>1276.0(4)</td>
<td>1276.0(4)</td>
</tr>
<tr>
<td>Space group</td>
<td>P 21/c</td>
<td>P2(1)/c</td>
</tr>
<tr>
<td>Hall group</td>
<td>-P 2ybc</td>
<td>-P 2ybc</td>
</tr>
<tr>
<td>Moiety formula</td>
<td>C${13}$H${14}$ClNOS</td>
<td>C${13}$H${14}$ClNOS</td>
</tr>
<tr>
<td>Sum formula</td>
<td>C${13}$H${14}$ClNOS</td>
<td>C${13}$H${14}$ClNOS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>Mr</td>
<td>267.77</td>
<td>267.76</td>
</tr>
<tr>
<td>Dx, g/cm³</td>
<td>1.394</td>
<td>1.394</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>μ (mm⁻¹)</td>
<td>0.445</td>
<td>0.445</td>
</tr>
<tr>
<td>F000</td>
<td>560.0</td>
<td>560.0</td>
</tr>
<tr>
<td>F000'</td>
<td>561.26</td>
<td></td>
</tr>
<tr>
<td>h,k,l<sub>max</sub></td>
<td>11,7,28</td>
<td>11,7,28</td>
</tr>
<tr>
<td>N<sub>ref</sub></td>
<td>2521</td>
<td>2513</td>
</tr>
<tr>
<td>T<sub>min</sub>, T<sub>max</sub></td>
<td>0.899, 0.956</td>
<td>0.719, 1.000</td>
</tr>
<tr>
<td>T<sub>min'</sub></td>
<td>0.837</td>
<td></td>
</tr>
<tr>
<td>Correction method</td>
<td>MULTI-SCAN</td>
<td></td>
</tr>
<tr>
<td>Data completeness</td>
<td>0.997</td>
<td></td>
</tr>
<tr>
<td>R(reflections)</td>
<td>0.0372(2348)</td>
<td></td>
</tr>
<tr>
<td>wR²(reflections)</td>
<td>0.1019(2513)</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>1.003</td>
<td></td>
</tr>
<tr>
<td>Npar</td>
<td>Npar = 196</td>
<td></td>
</tr>
</tbody>
</table>
References

7-Chloro-4-phenylnoline 1-oxide (S10)
5-Chloro-8-methoxyquinoline 1-oxide (S11)
8-Methoxy-2-(trifluoromethyl)quinoline (5)
7-Chloro-4-methoxy-2-(trifluoromethyl)quinoline (6)
5-Bromo-2-(trifluoromethyl)quinoline (7)
7-Chloro-4-phenyl-2-(trifluoromethyl)quinoline (9)

ppm (1H)
7-Chloro-4-(isopropylthio)-2-(trifluoromethyl)quinoline (12)

7-Chloro-4-(isopropylthio)-2-(trifluoromethyl)quinoline (12)
7-Chloro-4-(isopropylthio)-2-(perfluoropropyl)quinoline (14)
4-(tert-Butylthio)-7-chloro-2-(perfluoropropyl)quinoline (15)
5-Bromo-2-(perfluoroethyl)quinoline (16)
8-Methoxy-2-(perfluoroethyl)quinoline (18)
8-(tert-Butoxy)-5,7-dichloro-2-(trifluoromethyl)quinoline (28)
8-(tert-Butoxy)-5,7-dichloro-2-(perfluoroethyl)quinoline (29)

8-(tert-Butoxy)-5,7-dichloro-2-(perfluoroethyl)quinoline (29)

ppm (H)