Electronic Supporting Information

Facile access to amides and hydroxamic acids directly from nitroarenes

Shreyans K. Jain,ab K.A. Aravinda Kumar,ć Sandip B. Bharatebc* and Ram A. Vishwakarmaabc*

aNatural Product Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India.

bAcademy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India

c Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India.

* sbharate@iiim.res.in (S.B.B.); ram@iiim.res.in (R.A.V.)

Fax: (+) 91-191-2569333; Tel. (+) 91-191-2569111
CONTENTS

Section S1. Observations from investigation on rohitukine
Section S2. Monomer-dimer equilibrium of nitroso compounds
Section S3. LCMS analysis of reaction mixture (for entry 3, 12, 13 and 14 of Table 1) to determine ratio of compound 1a and 2a
Section S4. NMR data scans
 S4.a. 1H NMR of mixture of 1a and 2a (obtained from entry 3 of Table 1) in CDCl₃
 S4.b. 1H NMR of 4-chloro-N-phenylbenzamide 1a
 S4.c. 1H NMR spectrum of N-phenylbenzamide (1b)
 S4.d. 13C NMR spectrum of N-phenylbenzamide (1b)
 S4.e. 1H NMR Spectrum of 2,6-dichloro-N-phenylbenzamide (1c)
 S4.f. 13C NMR Spectrum of 2,6-dichloro-N-phenylbenzamide (1c)
 S4.g. 1H NMR Spectrum of 2,4,5-trimethoxy-N-phenylbenzamide (1d)
 S4.h. 13C NMR Spectrum of 2,4,5-trimethoxy-N-phenylbenzamide (1d)
 S4.i. 1H NMR Spectrum of 3-bromo-4-fluoro-N-phenylbenzamide (1e)
 S4.j. 13C NMR Spectrum of 3-bromo-4-fluoro-N-phenylbenzamide (1e)
 S4.k. 1H NMR Spectrum of 4-fluoro-N-phenylbenzamide (1f)
 S4.l. 13C NMR Spectrum of 4-fluoro-N-phenylbenzamide (1f)
 S4.m. 1H NMR Spectrum of 3,5-dimethoxy-N-phenylbenzamide (1g)
 S4.n. 13C NMR Spectrum of 3,5-dimethoxy-N-phenylbenzamide (1g)
 S4.o. 1H NMR Spectrum of 2-chloro-N-phenylbenzamide (1h)
 S4.p. 13C NMR Spectrum of 2-chloro-N-phenylbenzamide (1h)
 S4.q. 1H NMR Spectrum of 5-methyl-N-phenylpyrazine-2-carboxamide (1i)
 S4.r. 13C NMR Spectrum of 5-methyl-N-phenylpyrazine-2-carboxamide (1i)
 S4.s. 1H NMR Spectrum of 2-methyl-N-phenylbenzamide (1j)
 S4.t. 13C NMR Spectrum of 2-methyl-N-phenylbenzamide (1j)
 S4.u. 1H NMR Spectrum of 3-hydroxy-4-methoxy-N-phenylbenzamide (1k)
 S4.v. 13C NMR Spectrum of 3-hydroxy-4-methoxy-N-phenylbenzamide (1k)
 S4.w. 1H NMR Spectrum 2,4,5-trimethoxy-N-(pyridin-2-yl)benzamide (1l)
 S4.x. 13C NMR Spectrum of 2,4,5-trimethoxy-N-(pyridin-2-yl)benzamide (1l)
 S4.y. 1H NMR spectrum of 4-chloro-N-hydroxy-N-phenylbenzamide (2a) in CDCl₃
 S4.z. 13C NMR spectrum of 4-chloro-N-hydroxy-N-phenylbenzamide (2a) in CDCl₃

Section S5. References associated with supporting information
Section S1. Observations from investigation on rohitukine

Rohitukine is a chromone alkaloid isolated from barks of *Dysoxylum binectariferum*. This natural product led to the discovery of two anticancer clinical candidates viz. flavopiridol and P-276-00.

During our efforts on medicinal chemistry of rohitukine, present synthetic method was discovered. One of the targeted modification was conversion of allylic methyl group into –CHO functionality, for which we used N,N-dimethylnitrosoanilin which produced hydroxamic acid as a major product along with traces of desired 2-formyl product (Scheme 1).

Then, in order to get desired formyl product in good yield, we attempted to generate *in situ* ‘nitroso’ from nitrobenzene and Mn-oxide. However, again the desired formyl product was obtained only in traces and hydroxamic acid and amide products (revealed by LCMS) were the major side products (Scheme 2).
These results led to assumption that the 2-formyl product must have been formed, however it undergoes further reaction with N,N-dimethylNitrosoanilin to produce corresponding hydroxamic acid. This unexpected result was then implemented to establish a facile methodology for synthesis amides and hydroxamic acid from benzaldehydes and nitroarenes in presence of MnO$_2$.
Section S2. Monomer-dimer equilibrium of nitroso compounds

Dimerized product was observed as main product (Table 2, entries 13, 14) in case of 2-bromo-nitrobenzene and 2-iodo-nitrobenzene. These nitroarenes failed to give desired product in significant amount because the corresponding nitroso favoured dimerization.

Nitroso compounds are usually reactive intermediate and stabilized either by dimerization or resonance: noteworthy feature of nitroso compounds is their tendency to get stabilized by dimerization to azodioxy dimer, as a consequence of their low HOMO-LUMO energy gap and thus promotes high reactivity at low excitation energy. It was observed that o-iodo-nitrobenzene (4m) and o-bromo-nitrobenzene (4n) were failed to give desired amide in significant yield (yield: 7-8%; Table 2). The major product was characteristic colorless crystalline, organic solvent insoluble dimeric azodioxy compound which displayed characteristic IR spectrum. It is again important to discuss that yield of product in these cases depends on the equilibrium between monomer and dimer of nitroso. A controlled equilibrium can be translated to product yield. It is known from previous work that unhindered aromatics favor monomer formation, while o-substituted and hindered aromatics favor dimer formation. Low temperature with UV λ_{max} 254-350 nm favor monomer while high temperature and visible wavelength favors dimer. Monomer-dimer interchange depends on the availability of electrons on the N of nitroso, to form dimeric bond and would therefore decrease with increasing electronegativity of the R_2 (here Ph or substituted Ph). If R_2 is sufficient electron-donating, it favours dimerization and if the R_2 is electron-deficient or electron-withdrawing, it favors monomer and gets stabilized by resonance.
Section S3. LCMS analysis of reaction mixture (for entry 3, 12, 13 and 14 of Table 1) to determine ratio of compound 1a and 2a

Reaction was carried out using condition mentioned in entries 3, 12, 13 and 14 of Table 1. The LCMS analysis was done after the time point which is mentioned in Table 1.

Method: Chromolith column (50 mm x 4.6 mm, RP-18), Mobile phase: Acetonitrile/water (1% acetic acid), gradient elution over 25 min (0 min: 0/100, 15 min: 50/50, 20 min: 50/50, 22 min: 0/100, 25 min: 0/100), flow rate: 0.5 ml/min.
(a) LCMS analysis for reaction performed as per entry no 3 (LCMS spectra and MS spectras are shown)

(b) LCMS analysis for reaction performed as per entry no 12.

(c) LCMS analysis for reaction performed as per entry no 13.
(d) LCMS analysis for reaction performed as per entry no 14.
Section S4. NMR data scans

S4a. 1H NMR of mixture of 1a and 2a (obtained from entry 3 of Table 1) in CDCl$_3$

S4b. 1H NMR of 4-chloro-N-phenylbenzamide 1a

S4c. 1H NMR spectrum of N-phenylbenzamide (1b)
S4.d. 13C NMR spectrum of N-phenylbenzamide (1b)
S4.e. 1H NMR Spectrum of 2,6-dichloro-N-phenylbenzamide (1c)

S4.f. 13C NMR Spectrum of 2,6-dichloro-N-phenylbenzamide (1c)
S4.g. 1HNMR Spectrum of 2,4,5-trimethoxy-N-phenylbenzamide (1d)

S4.h. 13C NMR Spectrum of 2,4,5-trimethoxy-N-phenylbenzamide (1d)
S4.i. 1HNMR Spectrum of 3-bromo-4-fluoro-N-phenylbenzamide (1e)

S4.j. 13C NMR Spectrum of 3-bromo-4-fluoro-N-phenylbenzamide (1e)
S4.k. 1HNMR Spectrum of 4-fluoro-N-phenylbenzamide (1f)

S4.l. 13CNMR Spectrum of 4-fluoro-N-phenylbenzamide (1f)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data File Name</td>
<td>E:/NMR-NPC-P/01-jan-c13-mcd-2a/c13-shreyans/8/fid</td>
</tr>
<tr>
<td>Title</td>
<td>c13-shreyans</td>
</tr>
<tr>
<td>Comment</td>
<td>AM-4F</td>
</tr>
<tr>
<td>Origin</td>
<td>Bruker BioSpin GmbH</td>
</tr>
<tr>
<td>Owner</td>
<td>IIIM</td>
</tr>
<tr>
<td>Site</td>
<td>spect</td>
</tr>
<tr>
<td>Author</td>
<td>IIIM</td>
</tr>
<tr>
<td>Solvent</td>
<td>CDCl$_3$</td>
</tr>
<tr>
<td>Temperature</td>
<td>290.9</td>
</tr>
<tr>
<td>Pulse Sequence</td>
<td>zgpg30</td>
</tr>
<tr>
<td>Number of Scans</td>
<td>1200</td>
</tr>
<tr>
<td>Receiver Gain</td>
<td>1825</td>
</tr>
<tr>
<td>Relaxation Delay</td>
<td>1.0000</td>
</tr>
<tr>
<td>Pulse Width</td>
<td>8.4500</td>
</tr>
<tr>
<td>Acquisition Time</td>
<td>1.0420</td>
</tr>
<tr>
<td>Acquisition Date</td>
<td>2014-01-01T16:22:07</td>
</tr>
<tr>
<td>Modification Date</td>
<td>2014-01-01T17:03:36</td>
</tr>
<tr>
<td>Spectrometer Frequency</td>
<td>125.76</td>
</tr>
<tr>
<td>Spectrometer Frequency</td>
<td>13146.5</td>
</tr>
<tr>
<td>Number of Scans</td>
<td>1200</td>
</tr>
<tr>
<td>Lowest Frequency</td>
<td>-3148.0</td>
</tr>
<tr>
<td>Nucleus</td>
<td>13C</td>
</tr>
<tr>
<td>Acquired Size</td>
<td>32768</td>
</tr>
<tr>
<td>Spectral Size</td>
<td>65536</td>
</tr>
</tbody>
</table>
S4.m. 1HNMR Spectrum of 3,5-dimethoxy-N-phenylbenzamide (1g)

S4.n. 13C NMR Spectrum of 3,5-dimethoxy-N-phenylbenzamide (1g)
S4.o. 1HNMR Spectrum of 2-chloro-N-phenylbenzamide (1h)

S4.p. 13CNMR Spectrum of 2-chloro-N-phenylbenzamide (1h)
S4.q. 1HNMR Spectrum of 5-methyl-N-phenylpyrazine-2-carboxamide (1i)

S4.r. 13CNMR Spectrum of 5-methyl-N-phenylpyrazine-2-carboxamide (1i)
S4.s. 1HNMR Spectrum of 2-methyl-N-phenylbenzamide (1j)

S4.t. 13C NMR Spectrum of 2-methyl-N-phenylbenzamide (1j)
S4.u. 1HNMR Spectrum of 3-hydroxy-4-methoxy-N-phenylbenzamide (1k)

S4.v. 13C NMR Spectrum of 3-hydroxy-4-methoxy-N-phenylbenzamide (1k)

S4.w. 1HNMR Spectrum 2,4,5-trimethoxy-N-(pyridin-2-yl)benzamide (1l)
S4.x. 13C-NMR Spectrum of 2,4,5-trimethoxy-N-(pyridin-2-yl)benzamide (II)
S4.y. 1H NMR spectrum of 4-chloro-N-hydroxy-N-phenylbenzamide (2a) in CDCl$_3$

S4.z. 13C NMR spectrum of 4-chloro-N-hydroxy-N-phenylbenzamide (2a) in CDCl$_3$
Section S5. References associated with ESI

