Novel Ruthenium-Catalyst for Hydroesterification of Olefins with Formates

Irina Profir,† Matthias Beller,*† Ivana Fleischer*†‡

†Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock.
‡Institute of Organic Chemistry, Universität Regensburg, Universitätsstrasse 31, 93040 Regensburg.

Supporting Information

Table of Contents

I General Methods and Materials S2

II Experimental Section S2

A. Preparation and Characterization of Ligand 4a and Complex 6 S2
B. General Procedure for Hydroesterification Reaction S4
C. Extended List of Tested Alkenes S5
D. Spectroscopic Data of Isolated Hydroesterification Products S7
E. NMR Spectra S16
F. References S42
I General Methods and Materials

1H NMR spectra were recorded on Bruker Avance 300 (300 MHz), Bruker Avance 400 (400 MHz) and Bruker Fourier 300 (300 MHz). 13C NMR spectra as well as DEPT 135 spectra were acquired in a broad band decoupled mode on Bruker Avance 300 (75 MHz) and Bruker Avance 400 (101 MHz). 19F (282 MHz) and 31P (122 MHz) spectra were recorded on Bruker Avance 300. The measurements were carried out at ambient temperature in CDCl$_3$, toluene-d$_6$ or DMSO-d$_6$. Chemical shifts δ are given in ppm and related to the corresponding solvent: references for CDCl$_3$ were 7.26 ppm (1H NMR) and 77.16 ppm (13C NMR), for toluene-d$_6$ 2.09 ppm (1H NMR) and 20.40 ppm (13C NMR), and for DMSO-d$_6$ 2.50 ppm (1H NMR) and 39.52 ppm (13C NMR). Multiplets were assigned as s (singlet), d (doublet), t (triplet), q (quartet), p (pentet), h (hexet), hept (heptet), m (multiplet), br. s (broad singlet) and combinations of those.

For GC analyses, HP 6890 chromatograph with a 30 m HPS column was used. IR spectra were obtained on Thermo Electron Nicolet FT-IR spectrometer (Thermo Electron, ATR) and the absorption bands λ are given in cm$^{-1}$. The signals were assigned as w (weak), m (medium), s (strong) and vs (very strong). GC-MS was performed on an Agilent 6890 N/5973 chromatography mass selective detector system. Electron ionization (EI, 70 eV) mass spectra were recorded on a MAT 95XP instrument. The data are given as mass units per charge (m/z) and intensities of signals are given in parentheses. HRMS (ESI) was performed on Finnigan MAT 95XP (Thermo Electron).

X-Ray data were collected on a Bruker Kappa APEX II Duo diffractometer. The structure was solved by direct methods and refined by full-matrix least-squares procedures on F^2 with the SHELXTL software package.1

Column chromatography was performed on silica gel 60 (40–63 μm) with a suitable mixture of n-heptane and ethyl acetate as eluent. Thin layered chromatography was conducted on readily coated TLC plates (silica 60 F$_{254}$). Visualization was achieved by UV light (254 nm), coloration with cerium molybdate stain or with potassium permanganate and heating.

All reactions were carried out under argon atmosphere. Solvents, formates and aromatic alkenes used in hydroformylation reactions have been applied as purchased without further purification. Aliphatic alkenes have been purified by distillation under argon atmosphere. The solvents used in ligand and complex synthesis were purified, degased, or distilled under argon atmosphere.

II Experimental Section

A. Preparation and Characterization of Ligand 4a and Complex 6

Ligands 4b,2 4c,2 4f,3 and 5a–c,4 have been prepared according to literature. Ligands 4d and 4e have been purchased and used without further purification.

2-{{(Dicyclohexylphosphino)methyl}-1-methyl-1H-imidazole (4a)

C$_{17}$H$_{29}$N$_2$P, 292.40 g mol$^{-1}$

Chlorodicyclohexylphosphine (1.35 ml, 6.1 mmol) was added dropwise to a solution of 1-methyl-2-{{(trimethylsilyl)methyl}-1H-imidazole (1.08 g, 6.4 mmol) in 20 ml abs. toluene at -70°C. The reaction mixture was stirred at this temperature for 1 h. Then it was allowed to warm up slowly and was stirred at ambient temperature overnight. Afterwards the volatile components were removed under reduced pressure. The residue was dissolved in 15 ml abs. ether and washed with water (2 x 10 ml). The etheric layer was then dried over MgSO$_4$, filtrated and concentrated to a volume of ca. 5 ml, allowing the title compound to crystallize. After filtration and drying in vacuo, ligand 4a was obtained as colorless solid in 76% yield. The spectral data are in agreement with the literature.2

1H NMR (300 MHz, CDCl$_3$) δ 6.82 (d, J = 1.3 Hz, 1H), 6.72 (dd, J = 1.3, 0.7 Hz, 1H), 3.61 (s, 3H), 2.87 (s, 2H), 1.82 – 1.65 (m, 8H), 1.65 – 1.46 (m, 4H), 1.36 – 1.15 (m, 8H), 1.15 – 0.93 (m, 2H).
13C NMR (75 MHz, CDCl$_3$) δ 146.1 (d, $J = 7.3$ Hz, C), 126.9 (CH), 120.6 (CH), 33.5 (d, $J = 14.3$ Hz, CH), 33.4 (d, $J = 9.5$ Hz, CH$_3$), 29.6 (d, $J = 13.2$ Hz, CH$_2$), 28.7 (d, $J = 8.7$ Hz, CH$_2$), 27.4 (d, $J = 10.9$ Hz, CH$_2$), 27.2 (d, $J = 8.1$ Hz, CH$_2$), 26.5 (CH$_2$), 21.1 (d, $J = 22.0$ Hz, CH$_3$).

31P NMR (122 MHz, CDCl$_3$) δ -6.93.

$\text{[Ru(CO)$_3$(4a)] (6)}$

\[
\begin{array}{c}
\text{Me} \\
\text{N}
\end{array}
\begin{array}{c}
\text{OC} \\
\text{Ru}
\end{array}
\begin{array}{c}
\text{CO}
\end{array}
\]

C$_{20}$H$_{33}$N$_2$O$_3$PRu, 477.49 g mol$^{-1}$

Procedure A: Ruthenium dodecacarbonyl (0.0670 mmol, 42.6 mg) and ligand 4a (0.200 mmol, 58.5 mg) were dissolved in 2 ml of abs. toluene. The resulting mixture was heated to 100 °C and stirred at this temperature for 45 min. After cooling to ambient temperature, the solution was first stored at -18 °C over night and afterwards at ambient temperature for several days allowing complex 6 to crystallize. Filtration followed by drying the dark orange compound *in vacuo* yielded suitable crystals for X-Ray analysis.

Procedure B: Ruthenium dodecacarbonyl (0.33 mmol, 213 mg) and ligand 4a (1.0 mmol, 292 mg) were dissolved in 8 ml of abs. toluene. The resulting mixture was heated to 100 °C and stirred at this temperature for 45 min. After cooling to ambient temperature, the solvent was partially removed under reduced pressure allowing precipitation of complex 6. The remaining solvent was decanted and the brown powder was dried *in vacuo* to give 40% yield (in 2:1 mixture with toluene).

1H NMR (300 MHz, DMSO) δ 7.14 (t, $J = 1.2$ Hz, 1H), 6.76 (d, $J = 1.4$ Hz, 1H), 3.63 (s, 3H), 3.05 (d, $J = 8.3$ Hz, 2H), 2.02 – 1.82 (m, 4H), 1.82 – 1.53 (m, 8H), 1.41 – 1.25 (m, 6H), 1.25 – 1.03 (m, 4H).

13C NMR (75 MHz, DMSO) δ 218.1 (CO), 218.0 (CO), 151.5 (d, $J = 24.2$ Hz, C), 130.9 (d, $J = 3.6$ Hz, CH), 122.8 (CH), 34.9 (CH$_3$), 34.7 (d, $J = 15.7$ Hz, CH), 28.1 (d, $J = 7.0$ Hz, CH$_2$), 26.9 (CH$_2$), 26.3 (d, $J = 25.0$ Hz, CH$_2$), 25.8 (CH$_2$), 21.5 (d, $J = 14.8$ Hz, CH$_3$).

31P NMR (122 MHz, DMSO) δ 64.99.

IR (ATR) λ 3.2921 (m), 2853 (m), 1970 (s), 1879 (s), 1856 (vs), 1539 (w), 1495 (m), 1447 (m), 1396 (m), 1343 (w), 1283 (w), 1267 (w), 1238 (w), 1190 (w), 1170 (w), 1136 (w), 1104 (w), 1089 (w), 1038 (w), 1001 (w), 914 (w), 887 (w), 849 (m), 827 (w), 777 (w), 760 (w), 736 (s), 726 (s), 719 (m), 671 (w), 648 (m), 608 (s), 590 (s), 545 (s), 520 (m), 512 (m), 489 (m), 456 (m), 423 (s).

HRMS (ESI) calculated C$_{19}$H$_{30}$N$_2$O$_3$PRu [M+H-CO]$^+$ 451.10881; found 451.10951.

Crystal data for complex 6:

C$_{20}$H$_{33}$N$_2$O$_3$PRu, M = 477.49 g mol$^{-1}$, monoclinic, space group $P2_1/n$, $a = 12.1519(4)$, $b = 13.1631(4)$, $c = 13.3186(4)$ Å, $\beta = 99.585(1)$$^\circ$, $V = 2100.66(11)$ Å3, $T = 150(2)$ K, $Z = 4$, 37175 reflections measured, 5075 independent reflections ($R_{int} = 0.0216$), final R values ($I > 2\sigma(I)$): $R_1 = 0.0172$, $wR_2 = 0.0439$, final R values (all data): $R_1 = 0.0195$, $wR_2 = 0.0457$, 245 parameters.

Figure S1. Crystal structure of $\text{[Ru(CO)$_3$(4a)] (6)}$.

3
B. General Procedure for Hydroesterification Reaction

\[
\begin{array}{c}
\text{RO}H + \text{C}R' \xrightarrow{\text{Ru}_3\text{(CO)}_{12}, 4a \text{ DMF}} \text{RO-C}R' + \text{RO-C}Me
\end{array}
\]

Scheme 1. Model reaction.

Formate 1 (3.0 mmol), alkene 2 (4.5 mmol) and DMF (1.5 ml) were added to Ru$_3$(CO)$_{12}$ (16.0 mg, 25.0 µmol, 0.83 mol%) and 2-(dicyclohexylphosphino)methyl)-1-methyl-1H-imidazole (4a, 21.9 mg, 75.0 µmol, 2.5mol%) at ambient temperature. The reaction mixture was heated to 135 °C and stirred at this temperature for 24 h. After cooling down, it was diluted with EtOAc, washed with water and brine and dried over MgSO$_4$. The volatile components were then removed under reduced pressure and the crude product was subjected to column chromatography (eluent n-heptane/EtOAc) to obtain the purified product 3. The linear to branched ratio was determined by 1H NMR.

Alterations of the described conditions are marked in the table and specified in the footnotes.

Table S1. Variation of the solvents in model reaction.

<table>
<thead>
<tr>
<th>entry</th>
<th>solvent</th>
<th>yielda (%)</th>
<th>3aa:3$'$aaa</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>neat</td>
<td>90b</td>
<td>50:50</td>
</tr>
<tr>
<td>2</td>
<td>mesitylene</td>
<td>82b</td>
<td>48:52</td>
</tr>
<tr>
<td>3</td>
<td>PC</td>
<td>15</td>
<td>64:36</td>
</tr>
<tr>
<td>4</td>
<td>NMP</td>
<td>65</td>
<td>56:44</td>
</tr>
<tr>
<td>5</td>
<td>DMF</td>
<td>72</td>
<td>66:34</td>
</tr>
<tr>
<td>6</td>
<td>DMSO</td>
<td>61</td>
<td>69:31</td>
</tr>
</tbody>
</table>

a isolated yield; b isolating a clean product with methods described in general procedure was not possible.

Table S2. Effect of metal to ligand ratio in hydroesterification reaction.

<table>
<thead>
<tr>
<th>entry</th>
<th>[Ru] (mol%)</th>
<th>4a (mol%)</th>
<th>yielda (%)</th>
<th>3aa:3$'$aaa</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.5</td>
<td>0</td>
<td>2</td>
<td>65:35</td>
</tr>
<tr>
<td>2</td>
<td>2.5</td>
<td>1.25</td>
<td>20</td>
<td>79:21</td>
</tr>
<tr>
<td>3</td>
<td>5.0</td>
<td>2.5</td>
<td>42</td>
<td>79:21</td>
</tr>
<tr>
<td>4</td>
<td>2.5</td>
<td>2.5</td>
<td>89</td>
<td>67:33</td>
</tr>
<tr>
<td>5</td>
<td>2.5</td>
<td>5.0</td>
<td>traces</td>
<td>n.d.b</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>2.5</td>
<td>n.c.c</td>
<td>-</td>
</tr>
</tbody>
</table>

a isolated yield; b not definable; c no conversion.
Table S3. Complete list of tested alkenes 2.

<table>
<thead>
<tr>
<th>entry</th>
<th>alkene</th>
<th>products<sup>a</sup></th>
<th>yield (%)<sup>b</sup> (3ay:3’ay)<sup>c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2a</td>
<td>3aa BnO<sub>2</sub></td>
<td>89 (67:33)</td>
</tr>
<tr>
<td>2</td>
<td>2b</td>
<td>3ab BnO<sub>2</sub></td>
<td>88 (76:24)</td>
</tr>
<tr>
<td>3</td>
<td>2c</td>
<td>3ac BnO<sub>2</sub></td>
<td>85 (51:49)</td>
</tr>
<tr>
<td>4</td>
<td>2d</td>
<td>3ad BnO<sub>2</sub></td>
<td>72 (64:36)</td>
</tr>
<tr>
<td>5</td>
<td>2e</td>
<td>3ae BnO<sub>2</sub></td>
<td>86 (56:44)</td>
</tr>
<tr>
<td>6</td>
<td>2f</td>
<td>3af BnO<sub>2</sub></td>
<td>57 (51:49)</td>
</tr>
<tr>
<td>7<sup>d,e</sup></td>
<td>2g</td>
<td>3ag BnO<sub>2</sub></td>
<td>42 (59:22:18)</td>
</tr>
<tr>
<td>8<sup>d,e</sup></td>
<td>2’g</td>
<td>3’ag BnO<sub>2</sub></td>
<td>31 (51:29:20)</td>
</tr>
<tr>
<td>9<sup>d,e</sup></td>
<td>2h</td>
<td>3ah BnO<sub>2</sub></td>
<td>10</td>
</tr>
<tr>
<td>10<sup>d</sup></td>
<td>2i</td>
<td>3ai BnO<sub>2</sub></td>
<td>35</td>
</tr>
</tbody>
</table>

^a obtained products; ^b isolated yield of hydroesterification product; ^c linear to branched ratio determined by ¹H NMR; ^d reaction was carried out at 150 °C; ^e 1.7 mol% Ru₃(CO)₁₂, 5.0 mol% ligand 4a; ^f extended reaction time of 65 h; ^g high polymerization rate of alkene.
<table>
<thead>
<tr>
<th>entry</th>
<th>alkene</th>
<th>products<sup>a</sup></th>
<th>yield (%)<sup>b</sup></th>
<th>(3ay:3'ay)<sup>c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>11<sup>d</sup></td>
<td>2j (\equiv ^t\text{Bu})</td>
<td>3aj (\begin{array}{c} \text{BnO} \ \equiv ^t\text{Bu} \end{array})</td>
<td>11</td>
<td>72<sup>f</sup></td>
</tr>
<tr>
<td>12<sup>d</sup></td>
<td>2k (\equiv ^{n_{10}}\text{C}{10}H{21})</td>
<td>3ak (\begin{array}{c} \text{BnO} \ \equiv ^{n_{10}}\text{C}{10}H{21} \end{array})</td>
<td>17 (76:24)</td>
<td></td>
</tr>
<tr>
<td>13<sup>d,e</sup></td>
<td>2l (\equiv ^{n_{6}}\text{C}{6}H{13})</td>
<td>3al (\begin{array}{c} \text{BnO} \ \equiv ^{n_{6}}\text{C}{6}H{13} \end{array})</td>
<td>21 (76:24)</td>
<td>44<sup>f</sup> (70:30)</td>
</tr>
<tr>
<td>14<sup>d</sup></td>
<td>2'1 (\equiv ^{n_{6}}\text{C}{6}H{11})</td>
<td>3'am (\begin{array}{c} \text{BnO} \ \equiv ^{n_{6}}\text{C}{6}H{11} \end{array})</td>
<td>40<sup>f</sup> (67:33)</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>2m (\equiv \equiv)</td>
<td>3'am (\begin{array}{c} \text{BnO} \ \equiv \equiv \end{array})</td>
<td>73 (82:18)</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>2n (\equiv \equiv)</td>
<td>no conversion</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>17<sup>d,e</sup></td>
<td>2o (\equiv \equiv)</td>
<td>7, 15%</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>2p (\equiv \equiv)</td>
<td>no conversion</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>19<sup>e</sup></td>
<td>2q (\equiv \equiv)</td>
<td>3aq (\begin{array}{c} \text{BnO} \ \equiv \equiv \end{array})</td>
<td>17 (91:9)</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>2s (\equiv \equiv)</td>
<td>no conversion</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>2t (\equiv \equiv)</td>
<td>no conversion</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

^a obtained products; ^b isolated yield of hydroesterification product; ^c linear to branched ratio determined by ¹H NMR; ^d reaction was carried out at 150 °C; ^e 1.7mol% Ru₃(CO), 5.0mol% ligand 4a; ^f extended reaction time of 65 h; ^g high polymerization rate of alkene.
D. Spectroscopic Data of Isolated Hydroesterification Products

Benzyl 3-phenylpropanoate (3aa) and benzyl 2-phenylpropanoate (3’aa)

\[\text{C}_{16}\text{H}_{18}\text{O}_2, 240.30 \text{ g mol}^{-1} \]

Compounds 3aa and 3’aa were prepared from benzyl formate (1a, 0.38 ml, 3.0 mmol) and styrene (2a, 0.52 ml, 4.5 mmol) following the general procedure. The mixture was purified by column chromatography and obtained as colorless oil (2.66 mmol, 89%, 67:33). The spectral data are in agreement with the literature.\(^5\)

\[^1\text{H NMR} \ (300 \text{ MHz, CDCl}_3) \text{ 3aa} \delta \ 7.50 \sim 7.10 \ (m, 10H), \ 5.18 \ (s, 2H), \ 3.04 \ (t, J = 7.8 \text{ Hz, } 2H), \ 2.75 \ (t, J = 7.8 \text{ Hz, } 2H); \text{ 3’aa} \delta \ 7.50 \sim 7.10 \ (m, 10H), \ 5.22 \ (d, J = 13.0 \text{ Hz, } 1H), \ 5.14 \ (d, J = 12.5 \text{ Hz, } 1H), \ 3.84 \ (q, J = 7.1 \text{ Hz, } 1H), \ 1.59 \ (d, J = 7.1 \text{ Hz, } 3H). \]

\[^{13}\text{C NMR} \ (75 \text{ MHz, CDCl}_3) \text{ 3aa} \delta \ 172.6 \ (C), \ 140.4 \ (C), \ 136.0 \ (C), \ 128.5 \ (CH), \ 128.5 \ (CH), \ 128.3 \ (CH), \ 128.2 \ (CH), \ 127.9 \ (CH), \ 126.3 \ (CH), \ 66.2 \ (CH_2), \ 35.9 \ (CH_2), \ 31.0 \ (CH_3); \text{ 3’aa} \delta \ 174.2 \ (C), \ 140.4 \ (C), \ 136.0 \ (C), \ 128.6 \ (CH), \ 128.5 \ (CH), \ 128.2 \ (CH), \ 128.1 \ (CH), \ 127.6 \ (CH), \ 127.2 \ (CH), \ 66.4 \ (CH_2), \ 45.5 \ (CH), \ 18.5 \ (CH_3). \]

\[R_f (\text{SiO}_2, \text{n-heptane/EtOAc} \ 9:1) \ 0.37 \sim 0.38. \]

Methyl 3-phenylpropanoate (3ba) and methyl 2-phenylpropanoate (3’ba)

\[\text{C}_{10}\text{H}_{12}\text{O}_2, 164.20 \text{ g mol}^{-1} \]

Compounds 3ba and 3’ba were prepared from methyl formate (1b, 0.19 ml, 3.0 mmol) and styrene (2a, 0.52 ml, 4.5 mmol) following the general procedure. The mixture was purified by column chromatography and obtained as colorless oil (2.13 mmol, 71%, 52:48). The spectral data are in agreement with the literature.\(^6\)

\[^1\text{H NMR} \ (400 \text{ MHz, CDCl}_3) \text{ 3ba} \delta \ 7.59 \sim 7.14 \ (m, 5H), \ 3.74 \ (s, 3H), \ 3.01 \ (t, J = 7.8 \text{ Hz, } 2H), \ 2.69 \ (t, J = 7.8 \text{ Hz, } 2H); \text{ 3’ba} \delta \ 7.59 \sim 7.14 \ (m, 5H), \ 3.80 \ (q, J = 7.2 \text{ Hz, } 1H), \ 3.73 \ (s, 3H), \ 1.58 \ (d, J = 7.2 \text{ Hz, } 3H). \]

\[^{13}\text{C NMR} \ (101 \text{ MHz, CDCl}_3) \text{ 3ba} \delta \ 173.3 \ (C), \ 140.6 \ (C), \ 128.6 \ (CH), \ 128.3 \ (CH), \ 126.3 \ (CH), \ 51.6 \ (CH_3), \ 35.8 \ (CH_2), \ 31.0 \ (CH_3); \text{ 3’ba} \delta \ 175.0 \ (C), \ 140.6 \ (C), \ 128.7 \ (CH), \ 127.5 \ (CH), \ 127.2 \ (CH), \ 52.0 \ (CH_3), \ 45.5 \ (CH), \ 18.7 \ (CH_3). \]

\[R_f (\text{SiO}_2, \text{n-heptane/EtOAc} \ 19:1) \ 0.21 \sim 0.22. \]

Ethyl 3-phenylpropanoate (3ca) and ethyl 2-phenylpropanoate (3’ca)

\[\text{C}_{11}\text{H}_{14}\text{O}_2, 178.23 \text{ g mol}^{-1} \]
Compounds 3ca and 3’ca were prepared from ethyl formate (1c, 0.24 ml, 3.0 mmol) and styrene (2a, 0.52 ml, 4.5 mmol) following the general procedure. The mixture was purified by column chromatography and obtained as colorless oil (2.86 mmol, 95%, 66:34). The spectral data are in agreement with the literature.6,8

\(^1\)H NMR (300 MHz, CDCl\(_3\)) 3ca \(\delta\) 7.43 – 7.20 (m, 5H), 4.20 (q, \(J = 7.1\) Hz, 2H), 3.03 (t, \(J = 7.8\) Hz, 2H), 2.69 (t, \(J = 7.8\) Hz, 2H), 1.30 (t, \(J = 7.1\) Hz, 3H); 3’ca \(\delta\) 7.43 – 7.22 (m, 5H), 4.30 – 4.05 (m, 2H), 3.78 (q, \(J = 7.2\) Hz, 1H), 1.57 (d, \(J = 7.2\) Hz, 3H), 1.27 (t, \(J = 7.1\) Hz, 3H).

\(^13\)C NMR (75 MHz, CDCl\(_3\)) 3ca \(\delta\) 172.9 (C), 140.6 (C), 128.5 (CH), 128.4 (CH), 126.3 (CH), 60.4 (CH\(_2\)), 36.0 (CH\(_2\)), 31.1 (CH\(_3\)), 14.3 (CH\(_3\)); 3’ca \(\delta\) 174.6 (C), 140.8 (C), 128.6 (CH), 127.5 (CH), 127.1 (CH), 60.8 (CH\(_2\)), 45.6 (CH), 18.7 (CH), 14.2 (CH\(_3\)).

\(R_f\) (SiO\(_2\), n-heptane/EtOAc 19:1) 0.27 – 0.28.

Propyl 3-phenylpropanoate (3da) and propyl 2-phenylpropanoate (3’da)

\(\text{C}_{12}\text{H}_{16}\text{O}_2\), 192.25 g mol\(^{-1}\)

Compounds 3da and 3’da were prepared from \(n\)-propyl formate (1d, 0.29 ml, 3.0 mmol) and styrene (2a, 0.52 ml, 4.5 mmol) following the general procedure. The mixture was purified by column chromatography and obtained as colorless oil (2.83 mmol, 94%, 64:36). The spectral data are in agreement with the literature.6

\(^1\)H NMR (300 MHz, CDCl\(_3\)) 3da \(\delta\) 7.40 – 7.29 (m, 3H), 7.29 – 7.20 (m, 2H), 4.07 (t, \(J = 6.7\) Hz, 2H), 3.00 (t, \(J = 7.8\) Hz, 2H), 2.67 (t, \(J = 7.8\) Hz, 2H), 1.73 – 1.57 (m, 2H), 0.95 (t, \(J = 7.4\) Hz, 3H); 3’da \(\delta\) 7.40 – 7.29 (m, 3H), 7.29 – 7.20 (m, 2H), 4.07 (t, \(J = 6.7\) Hz, 2H), 3.76 (q, \(J = 7.2\) Hz, 1H), 1.73 – 1.57 (m, 2H), 1.55 (d, \(J = 7.2\) Hz, 3H), 0.90 (t, \(J = 7.4\) Hz, 3H).

\(^13\)C NMR (75 MHz, CDCl\(_3\)) 3da \(\delta\) 172.9 (C), 140.6 (C), 128.5 (CH), 128.3 (CH), 126.2 (CH), 66.1 (CH\(_2\)), 35.9 (CH\(_2\)), 31.0 (CH\(_3\)), 22.0 (CH\(_3\)), 10.4 (CH\(_3\)); 3’da \(\delta\) 174.6 (C), 140.8 (C), 128.6 (CH), 127.5 (CH), 127.1 (CH), 66.3 (CH\(_2\)), 45.6 (CH\(_3\)), 22.0 (CH\(_3\)), 18.5 (CH), 10.3 (CH\(_3\)).

\(R_f\) (SiO\(_2\), n-heptane/EtOAc 9:1) 0.43 – 0.44.

Isopropyl 3-phenylpropanoate (3ea) and isopropyl 2-phenylpropanoate (3’ea)

\(\text{C}_{12}\text{H}_{16}\text{O}_2\), 192.25 g mol\(^{-1}\)

Compounds 3ea and 3’ea were prepared from isopropyl formate (1e, 0.30 ml, 3.0 mmol) and styrene (2a, 0.52 ml, 4.5 mmol) following the general procedure. The mixture was purified by column chromatography and obtained as colorless oil (1.04 mmol, 35%, 83:17). The spectral data are in agreement with the literature.6

\(^1\)H NMR (300 MHz, CDCl\(_3\)) 3ea \(\delta\) 7.37 – 7.21 (m, 5H), 5.05 (hept, \(J = 6.3\) Hz, 1H), 2.98 (t, \(J = 7.8\) Hz, 2H), 2.63 (t, \(J = 7.8\) Hz, 2H), 1.24 (d, \(J = 6.3\) Hz, 6H); 3’ea \(\delta\) 7.37 – 7.21 (m, 5H), 5.04 (hept, \(J = 6.2\) Hz, 1H), 3.71 (q, \(J = 7.2\) Hz, 1H), 1.52 (d, \(J = 7.2\) Hz, 3H), 1.28 (d, \(J = 6.2\) Hz, 3H), 1.17 (d, \(J = 6.2\) Hz, 3H).
Compounds 3ga and 3’ga were prepared from phenyl formate (1g, 0.33 ml, 3.0 mmol) and styrene (2a, 0.52 ml, 4.5 mmol) following the general procedure. The mixture was purified by column chromatography and obtained as colorless oil (1.68 mmol, 56%, 96:4). The spectral data are in agreement with the literature.9,10

\[^{13}C\text{ NMR (75 MHz, CDCl}_3\text{)} 3\text{ea }\delta 172.4 (C), 140.6 (C), 128.5 (CH), 128.4 (CH), 126.2 (CH), 67.7 (CH), 36.3 (CH\text{\textsubscript{2}}), 31.1 (CH\text{\textsubscript{2}}), 21.8 (CH\text{\textsubscript{3}}); 3'\text{ea }\delta 174.0 (C), 140.9 (C), 128.5 (CH), 127.5 (CH), 127.0 (CH), 67.9 (CH), 45.8 (CH), 21.8 (CH\text{\textsubscript{3}}), 21.6 (CH\text{\textsubscript{3}}), 18.6 (CH\text{\textsubscript{3}}).\]

\[R_f (\text{SiO}_2, n\text{-heptane/EtOAc 9:1}) 0.37 – 0.38.\]

Phenyl 3-phenylpropanoate (3ga) and phenyl 2-phenylpropanoate (3’ga)

![Diagram of Phenyl 3-phenylpropanoate (3ga) and phenyl 2-phenylpropanoate (3’ga)]

\[C_{15}H_{14}O_2, 226.27 \text{ g mol}^{-1}\]

Benzyl 3-(o-tolyl)propanoate (3ab) and benzyl 2-(o-tolyl)propanoate (3’ab)

![Diagram of Benzyl 3-(o-tolyl)propanoate (3ab) and benzyl 2-(o-tolyl)propanoate (3’ab)]

\[C_{17}H_{18}O_2, 254.32 \text{ g mol}^{-1}\]

Compounds 3ab and 3’ab were prepared from benzyl formate (1a, 0.38 ml, 3.0 mmol) and 2-methylstyrene (2b, 0.58 ml, 4.5 mmol) following the general procedure. The mixture was purified by column chromatography and obtained as colorless oil (2.64 mmol, 88%, 76:24).

\[^{1}H\text{ NMR (300 MHz, CDCl}_3\text{)} 3\text{ab }\delta 7.54 – 7.33 (m, 5H), 7.35 – 7.17 (m, 4H), 5.26 (s, 2H), 3.11 (t, \textit{J} = 7.8 Hz, 2H), 2.78 (t, \textit{J} = 7.8 Hz, 2H), 2.45 (s, 3H); 3'\text{ab }\delta 7.54 – 7.33 (m, 5H), 7.35 – 7.17 (m, 4H), 5.30 (d, \textit{J} = 12.7 Hz, 1H), 5.19 (d, \textit{J} = 12.5 Hz, 1H), 4.15 (q, \textit{J} = 7.1 Hz, 1H), 2.49 (s, 3H), 1.64 (d, \textit{J} = 7.1 Hz, 3H).\]

\[^{13}C\text{ NMR (75 MHz, CDCl}_3\text{)} 3\text{ab }\delta 172.8 (C), 138.6 (C), 136.0 (C), 130.3 (CH), 128.6 (CH), 128.6 (CH), 128.3 (CH), 126.5 (CH), 126.2 (CH), 66.3 (CH\text{\textsubscript{2}}), 34.6 (CH\text{\textsubscript{2}}), 28.3 (CH\text{\textsubscript{3}}), 19.3 (CH\text{\textsubscript{3}}); 3'\text{ab }\delta 174.6 (C), 139.0 (C), 136.1 (C), 135.7 (C), 130.5 (CH), 128.5 (CH), 128.1 (CH), 127.9 (CH), 127.0 (CH), 126.6 (CH), 126.4 (CH), 66.4 (CH\text{\textsubscript{2}}), 41.4 (CH), 19.7 (CH\text{\textsubscript{3}}), 17.9 (CH\text{\textsubscript{3}}).\]

\[R_f (\text{SiO}_2, n\text{-heptane/EtOAc 9:1}) 0.38.\]

\[\text{IR (ATR) } \lambda^{-1} 3065 (w), 3031 (w), 2948 (w), 1731 (vs), 1604 (w), 1494 (m), 1455 (m), 1380 (m), 1354 (w), 1283 (w), 1231 (w), 1212 (m), 1149 (vs), 1106 (m), 1082 (w), 1053 (w), 1029 (w), 1002 (w), 909 (w), 825 (w), 731 (s), 696 (vs), 578 (w), 493 (w), 454 (m).\]
MS (GC-MS, El) 3ab m/z (%) 254 (5) [M⁺], 194 (19), 181 (2), 163 (58), 133 (25), 121 (87), 105 (27), 91 (100), 77 (20), 65 (21); 3'ab m/z 254 (4) [M⁺], 181 (4), 163 (6), 119 (100), 104 (6), 91 (61), 77 (9), 65 (12).
HR-MS (El) m/z calcld. for C₁₃H₁₈O₂ 254.13013, found 254.12997.

Benzyl 3-(m-tolyl)propanoate (3ac) and benzyl 2-(m-tolyl)propanoate (3'ac)

![Structural diagram of 3ac and 3'ac]

C₁₇H₂₀O₂, 256.32 g mol⁻¹

Compounds 3ac and 3'ac were prepared from benzyl formate (1a, 0.38 ml, 3.0 mmol) and 3-methylstyrene (2c, 0.60 ml, 4.5 mmol) following the general procedure. The mixture was purified by column chromatography and obtained as colorless oil (2.55 mmol, 85%, 67:33).

¹H NMR (300 MHz, CDCl₃) 3ac δ 7.68 – 7.52 (m, 4H), 7.52 – 7.39 (m, 2H), 7.39 – 7.21 (m, 3H), 5.37 (s, 2H), 3.20 (t, J = 7.8 Hz, 2H), 2.94 (t, J = 7.8 Hz, 2H), 2.57 (s, 3H); 3'ac 7.68 – 7.52 (m, 4H), 7.52 – 7.39 (m, 2H), 7.39 – 7.21 (m, 3H), 5.42 (d, J = 12.5 Hz, 1H), 5.32 (d, J = 12.5 Hz, 1H), 4.00 (q, J = 7.2 Hz, 1H), 2.58 (s, 3H), 1.77 (d, J = 7.2 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃) 3ac δ 174.5 (C), 140.4 (C), 138.1 (C), 136.0 (C), 128.5 (CH), 128.3 (CH), 128.3 (CH), 128.1 (CH), 128.0 (CH), 66.4 (CH₂), 36.0 (CH₃), 31.0 (CH₃), 21.5 (CH₃); 3'ac δ 172.8 (C), 140.4 (C), 138.3 (C), 136.1 (C), 129.2 (CH), 128.6 (CH), 128.5 (CH), 127.1 (CH), 125.4 (CH), 124.7 (CH), 66.3 (CH₂), 45.5 (CH), 21.5 (CH₃), 18.6 (CH₃).

R_r (SiO₂, n-heptane/EtOAc 9:1) 0.42.

IR (ATR) λ¹ 3062 (w), 3032 (w), 2976 (w), 2935 (w), 2875 (w), 1731 (vs), 1608 (w), 1589 (w), 1497 (w), 1455 (m), 1378 (w), 1330 (w), 1293 (w), 1232 (m), 1166 (s), 1148 (vs), 1082 (m), 1056 (w), 1028 (w), 1001 (w), 904 (w), 882 (w), 780 (m), 735 (s), 695 (vs), 579 (w), 497 (w), 443 (m).

MS (GC-MS, El) m/z (%) 254 (4) [M⁺], 119 (100), 103 (4), 91 (53), 77 (8), 65 (10).
HR-MS (El) m/z calcld. for C₁₃H₁₈O₂ 254.13013, found 254.12996.

Benzyl 3-(naphthalen-2-yl)propanoate (3ad) and benzyl 2-(naphthalen-2-yl)propanoate (3'ad)

![Structural diagram of 3ad and 3'ad]

C₂₀H₂₂O₂, 290.36 g mol⁻¹

Compounds 3ad and 3'ad were prepared from benzyl formate (1a, 0.38 ml, 3.0 mmol) and 2-vinylnaphthalene (2d, 0.69 g, 4.5 mmol) following the general procedure. The mixture was purified by column chromatography and obtained as yellowish oil (2.16 mmol, 72%, 67:33).

¹H NMR (300 MHz, CDCl₃) 3ad δ 7.88 – 7.72 (m, 3H), 7.65 (s, 1H), 7.52 – 7.41 (m, 2H), 7.38 – 7.27 (m, 6H), 5.14 (s, 2H), 3.17 (t, J = 7.8 Hz, 2H), 2.81 (t, J = 7.8 Hz, 2H); 3'ad δ 7.88 – 7.72 (m, 3H), 7.65 (s, 1H), 7.52 – 7.41 (m, 2H), 7.38 – 7.27 (m, 6H), 5.22 (d, J = 12.5 Hz, 1H), 5.10 (d, J = 12.5 Hz, 1H), 3.98 (q, J = 7.2 Hz, 1H), 1.64 (d, J = 7.2 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃) 3ad δ 172.8 (C), 138.0 (C), 136.00 (C), 133.7 (C), 132.3 (C), 128.6 (CH), 128.3 (CH), 128.2 (CH), 127.7 (CH), 127.7 (CH), 127.1 (CH), 126.6 (CH), 126.1 (CH), 125.5 (CH), 66.4 (CH₂), 35.9 (CH₃), 31.2 (CH₂); 3'ad δ 174.4 (C), 138.0 (C), 136.1 (C), 133.6 (C), 132.7 (C), 128.6 (CH), 128.4 (CH), 128.2 (CH), 128.1 (CH), 127.9 (CH), 127.7 (CH), 126.3 (CH), 126.2 (CH), 125.9 (CH), 66.6 (CH₂), 45.8 (CH), 18.7 (CH₃).
R_f (SiO$_2$, n-heptane/EtOAc 9:1) 0.32 – 0.35.

IR (ATR) λ 3053 (w), 2936 (w), 1730 (vs), 1632 (w), 1600 (w), 1508 (w), 1498 (w), 1455 (m), 1380 (w), 1349 (s), 1212 (m), 1153 (s), 1145 (s), 1081 (w), 1019 (w), 962 (m), 892 (w), 855 (m), 816 (s), 741 (vs), 695 (vs), 651 (w), 620 (w), 578 (w), 474 (vs).

MS (GC-MS, El) 3ad m/z (%) 290 (29) [M$^+$], 199 (46), 157 (100), 141 (27), 129 (24), 115 (17), 91 (50), 77 (10), 65 (11); 3'ad m/z (%) 290 (20) [M$^+$], 155 (100), 128 (9), 91 (28), 77 (5), 65 (5).

HR-MS (El) m/z calcd. for C$_{20}$H$_{18}$O$_2$ 390.13013, found 390.12990.

Benzyl 3-(3,5-bis(trifluoromethyl)phenyl)propanoate (3ae) and enzy 2-(3,5-bis(trifluoromethyl)phenyl)propanoate (3'ae)

![Chemical structure of 3ae and 3'ae](image)

C_{18}H$_{18}$F$_6$O$_2$, 376.29 g mol$^{-1}$

Compounds 3ae and 3'ae were prepared from benzyl formate (1a, 0.38 ml, 3.0 mmol) and styrene (2e, 0.50 ml, 2.7 mmol) following the general procedure. The esters were isolated by column chromatography as colorless oils giving 3ae in 48% (1.29 mmol) and 3'ae in 38% (1.02 mmol) yield.

![Chemical structure of 3ae](image)

1H NMR (300 MHz, CDCl$_3$) δ 7.73 (br. s, 1H), 7.66 (br. s, 2H), 7.47 – 7.27 (m, 5H), 5.11 (s, 2H), 3.10 (t, J = 7.5 Hz, 2H), 2.75 (t, J = 7.5 Hz, 2H).

13C NMR (75 MHz, CDCl$_3$) δ 171.9 (C), 142.9 (C), 135.7 (C), 131.9 (q, J = 33.1 Hz, C), 128.7 (CH), 128.8 (CH), 128.5 (CH), 128.4 (CH), 123.5 (q, J = 272.5 Hz, C), 120.6 (hept, J = 3.7 Hz, CH), 66.8 (CH$_2$), 35.2 (CH$_2$), 30.6 (CH$_3$).

19F NMR (282 MHz, CDCl$_3$) δ –62.46.

R_f (SiO$_2$, n-heptane/EtOAc 9:1) 0.32.

IR (ATR) λ 3037 (w), 2952 (w), 1735 (m–s), 1622 (w), 1499 (w), 1456 (w), 1378 (m–s), 1358 (m), 1275 (vs), 1166 (s), 1125 (vs), 1107 (s), 1051 (w), 1029 (w), 1002 (w), 892 (m–s), 867 (w), 844 (m), 744 (m), 736 (m), 725 (m), 703 (m–s), 697 (s), 682 (s), 577 (w), 501 (w), 461 (w).

MS (GC-MS, El) m/z (%) 376 (8) [M$^+$], 357 (5), 316 (5), 241 (12), 201 (10), 151 (5), 108 (60), 91 (100), 65 (10).

HR-MS (El) m/z calcd. for C$_{18}$H$_{18}$F$_6$O$_2$ 376.08925; found 376.08840.
\[\text{Benzyl-}4 \text{-phenylbutanoate (3ag), benzyl 2-methyl-3-phenylpropanoate (3’ag) and benzyl 2-phenylbutanoate (3’’ag)} \]

\[\text{IR (ATR) } \lambda^1 = 3070 \text{ (w), 3037 (w), 2985 (w), 2943 (w), 1736 (m–s), 1623 (w), 1499 (w), 1462 (w), 1457 (w), 1372 (m–s), 1275 (vs), 1166 (vs), 1125 (vs), 1086 (m–s), 1063 (m), 1016 (w), 953 (w), 898 (s), 846 (m), 786 (w), 751 (m), 697 (s), 681 (s), 602 (w), 495 (w), 456 (w).} \]

\[\text{MS (GC-MS, El) } m/z \% = \text{376 (2)} \text{ [M^+], 357 (1), 303 (15), 241 (7), 221 (5), 201 (9), 151 (3), 108 (2), 91 (100), 65 (7).} \]

\[\text{HR-MS (El) } m/z \text{ calcd for } \text{C}_{18}\text{H}_{14}\text{F}_2\text{O}_2 \text{ 376.08925; found 376.08838.} \]
Compounds 3ag, 3’ag and 3”ag were prepared from benzyl formate (1a, 0.38 ml, 3.0 mmol) and either allylbenzene (2g, 0.60 ml, 4.5 mmol; Table S3, entry 7) or β-methyl styrene (2’g, 0.58 ml, 4.5 mmol; Table S3, entry 8). The reactions were carried out at 150 °C applying 5mol% of the catalyst composed of Ru\(_2\)(CO)\(_{12}\) (0.05 mmol, 31.96 mg) and ligand 4a (0.15 mmol, 43.86 mg) under otherwise standard conditions. The mixture was purified by column chromatography and obtained as colorless oil in 42% (1.26 mmol, 59:22:18) yield from 2g and 31% (0.93 mmol, 51:29:20) from 2’g, respectively. The spectral data are in agreement with the literature.

\(^{1}\)H NMR (300 MHz, CDCl\(_3\)) δ 7.33 – 6.97 (m, 10H), 5.00 (s, 2H), 2.53 (t, \(J = 7.6 \text{ Hz}, 2H\)), 2.26 (t, \(J = 7.6 \text{ Hz}, 2H\)), 1.87 (p, \(J = 7.6 \text{ Hz}, 2H\)); 3’ag δ 7.33 – 6.97 (m, 10H), 4.97 (s, 2H), 2.94 (dd, \(J = 13.0, 6.8 \text{ Hz}, 1H\)), 2.70 (h, \(J = 6.8 \text{ Hz}, 1H\)), 2.63 – 2.55 (m, 1H), 1.08 (d, \(J = 6.8 \text{ Hz}, 3H\)); 3”ag δ 7.33 – 6.97 (m, 10H), 5.07 (d, \(J = 12.5 \text{ Hz}, 1H\)), 4.92 (d, \(J = 12.4 \text{ Hz}, 1H\)), 3.41 (t, \(J = 7.7 \text{ Hz}, 1H\)), 2.11 – 1.94 (m, 1H), 1.80 – 1.64 (m, 1H), 0.78 (t, \(J = 7.4 \text{ Hz}, 3H\)).

\(^{13}\)C NMR (75 MHz, CDCl\(_3\)) 3ag δ 173.2 (C), 141.3 (C), 136.1 (C), 129.0 (CH), 128.6 (CH), 128.5 (CH), 128.4 (CH), 128.2 (CH), 126.0 (CH), 66.2 (CH\(_2\)), 35.2 (CH\(_2\)), 33.7 (CH\(_2\)), 26.6 (CH\(_2\)); 3’ag δ 175.8 (C), 39.3 (C), 136.1 (C), 128.5 (CH), 128.4 (CH), 128.2 (CH), 128.1 (CH), 128.1 (CH), 126.3 (CH), 66.1 (CH\(_2\)), 41.6 (CH), 39.8 (CH\(_2\)), 16.9 (CH\(_2\)); 3”ag δ 173.8 (C), 139.0 (C), 136.1 (C), 128.6 (CH), 128.5 (CH), 128.1 (CH), 128.0 (CH), 127.9 (CH), 127.2 (CH), 66.3 (CH\(_2\)), 53.6 (CH), 26.8 (CH\(_2\)), 12.2 (CH\(_3\)).

\(R_F\) (SiO\(_2\), n-heptane/EtOAc 9:1) 0.34 – 0.39.

Benzyl 3-phenylbutanoate (3ah)

\[
\text{C}_{13}\text{H}_{18}\text{O}_{2} \quad 254.32 \text{ g mol}^{-1}
\]

Compound 3ah was prepared from benzyl formate (1a, 0.38 ml, 3.0 mmol) and α-methyl styrene (2h, 0.58 ml, 4.5 mmol). The reaction was carried out at 150 °C applying 5mol% of the catalyst composed of Ru\(_2\)(CO)\(_{12}\) (0.05 mmol, 31.96 mg) and ligand 4a (0.15 mmol, 43.86 mg) under otherwise standard conditions. The product was purified by column chromatography and obtained as colorless oil (0.29 mmol, 10%). The spectral data are in agreement with the literature.

\(^{1}\)H NMR (300 MHz, CDCl\(_3\)) δ 7.31 – 7.02 (m, 10H), 4.96 (s, 2H), 3.21 (h, \(J = 7.1 \text{ Hz}, 1H\)), 2.58 (dd, \(J = 15.1, 7.2 \text{ Hz}, 1H\)), 2.50 (dd, \(J = 15.1, 8.0 \text{ Hz}, 1H\)), 1.20 (d, \(J = 7.1 \text{ Hz}, 3H\)).

\(^{13}\)C NMR (75 MHz, CDCl\(_3\)) δ 172.3 (C), 145.7 (C), 136.0 (C), 128.6 (CH), 128.6 (CH), 128.3 (CH), 126.9 (CH), 126.5 (CH), 66.3 (CH\(_2\)), 43.0 (CH\(_2\)), 36.7 (CH), 22.0 (CH\(_3\)).

\(R_F\) (SiO\(_2\), n-heptane/EtOAc 9:1) 0.31.

Benzyl cyclohexanecarboxylate (3ai)

\[
\text{C}_{14}\text{H}_{16}\text{O}_{2} \quad 218.29 \text{ g mol}^{-1}
\]

Compound 3ai was prepared from benzyl formate (1a, 0.38 ml, 3.0 mmol) and cyclohexene (2i, 0.46 ml, 4.5 mmol). The reaction was carried out at 150 °C under otherwise standard conditions. The product was purified by column chromatography and obtained as colorless oil (1.05 mmol, 35%). The spectral data are in agreement with the literature.

13
\[^1H \text{NMR (300 MHz, CDCl}_3) \delta 7.42 – 7.28 (m, 5H), 5.12 (s, 2H), 2.37 (tt, \ J = 11.3, 3.6 \text{ Hz, 1H}), 2.08 – 1.86 (m, 2H), 1.82 – 1.73 (m, 2H), 1.69 – 1.60 (m, 1H), 1.56 – 1.40 (m, 2H), 1.38 – 1.18 (m, 3H). \]

\[^13C \text{NMR (75 MHz, CDCl}_3) \delta 175.9 \text{ (C), 136.4 (C), 128.6 (CH), 128.1 (CH), 128.0 (CH), 66.0 (CH}_2, 43.3 \text{ (CH), 29.1 (CH}_3, 25.8 \text{ (CH}_2, 25.5 \text{ (CH}_3.} \]

\[R_f (\text{SiO}_2, n\text{-heptane/EtOAc 9:1}) 0.42. \]

Benzyl 4,4-dimethylpentanoate (3aj)

\[
\begin{align*}
\text{C}_{14}\text{H}_{20}\text{O}_2 & \rightarrow 220.31 \text{ g mol}^{-1} \\
\end{align*}
\]

Compound 3aj was prepared from benzyl formate (1a, 0.38 ml, 3.0 mmol) and 3,3-dimethyl-1-butene (2j, 0.58 ml, 4.5 mmol). The reaction was carried out at 150 °C under otherwise standard conditions. The product was purified by column chromatography and obtained as colorless oil (0.31 mmol, 11%). The spectral data are in agreement with the literature.

\[^1H \text{NMR (300 MHz, CDCl}_3) \delta 7.40 – 7.29 (m, 5H), 5.12 (s, 2H), 2.39 – 2.29 (m, 2H), 1.65 – 1.53 (m, 2H), 0.90 (s, 9H). \]

\[^13C \text{NMR (75 MHz, CDCl}_3) \delta 174.4 \text{ (C), 136.2 (C), 128.7 (CH), 128.4 (CH), 128.3 (CH), 66.3 (CH}_2, 38.7 \text{ (CH}_2, 30.3 \text{ (CH}_3, 29.1 \text{ (CH}_3.} \]

\[R_f (\text{SiO}_2, n\text{-heptane/EtOAc 9:1}) 0.47. \]

Benzyl tridecanoate (3ak) and benzyl 2-methyldodecanoate (3’ak)

\[
\begin{align*}
\text{C}_{20}\text{H}_{32}\text{O}_2 & \rightarrow 304.47 \text{ g mol}^{-1} \\
\end{align*}
\]

Compounds 3ak and 3’ak were prepared from benzyl formate (1a, 0.38 ml, 3.0 mmol) and 1-dodecene (2k, 1.00 ml, 4.5 mmol). The reaction was carried out at 150 °C under otherwise standard conditions. The mixture was purified by column chromatography and obtained as colorless oil (0.50 mmol, 17%, 76:24). The spectral data are in agreement with the literature.

\[^1H \text{NMR (300 MHz, CDCl}_3) 3ak 7.41 – 7.28 (m, 5H), 5.12 (s, 2H), 2.35 (t, \ J = 7.4 \text{ Hz, 2H}), 1.64 (p, \ J = 7.4 \text{ Hz, 2H}), 1.28 – 1.24 (m, 18H), 0.88 \text{ (t, } J = 6.7 \text{ Hz, 3H}); 3’ak \delta 7.41 – 7.28 (m, 5H), 5.12 (s, 2H), 2.48 (h, \ J = 6.9 \text{ Hz, 1H}), 1.69 – 1.59 (m, 2H), 1.28 – 1.24 (m, 16H), 1.16 (d, \ J = 6.9 \text{ Hz, 3H}, 0.88 (t, \ J = 6.7 \text{ Hz, 3H}). \]

\[R_f (\text{SiO}_2, n\text{-heptane/EtOAc 9:1}) 0.54. \]
Benzyl nonanoate (3al) and benzyl 2-methyloctanoate (3'al)

![Structures of Benzyl nonanoate and Benzyl 2-methyloctanoate]

C_{16}H_{24}O_2, 248.36 g mol⁻¹

Compounds 3al and 3'al were prepared from benzyl formate (1a, 0.38 ml, 3.0 mmol) and either 1-octene (2l, 0.70 ml, 4.5 mmol) or 2-octene (2'l, 0.70 ml, 4.5 mmol). The reactions were carried out at 150 °C and 65 h reaction time under otherwise standard conditions. The product mixture was purified by column chromatography and obtained as colorless oil in 44% (1.33 mmol, 70:30) yield from 2l and 40% (1.21 mmol, 67:33) yield from 2'l, respectively. The spectral data are in agreement with the literature. 13,14

1H NMR (300 MHz, CDCl₃) 3al δ 7.44 – 7.27 (m, 5H), 5.13 (s, 2H), 2.37 (t, J = 7.5 Hz, 2H), 1.66 (p, J = 7.5 Hz, 2H), 1.37 – 1.22 (m, 10H), 0.90 (t, J = 6.8 Hz, 3H); 3'al δ 7.44 – 7.27 (m, 5H), 5.13 (s, 2H), 2.51 (q, J = 7.0 Hz, 1H), 1.37 – 1.22 (m, 10H), 1.18 (d, J = 7.0 Hz, 3H), 0.93 – 0.86 (m, 3H).

R_f (SiO_2, n-heptane/EtOAc 9:1) 0.48 – 0.49.

Benzyl 4-methylpent-3-enoate (3am) and benzyl 4-methylpent-2-enoate (3'am)

![Structures of Benzyl 4-methylpent-3-enoate and Benzyl 4-methylpent-2-enoate]

C_{13}H_{16}O_2, 204.26 g mol⁻¹

Compounds 3am and 3'am were prepared from benzyl formate (1a, 0.38 ml, 3.0 mmol) and isoprene (2m, 0.45 ml, 4.5 mmol) following the general procedure. The product mixture was purified by column chromatography and obtained as colorless oil (2.20 mmol, 73%, 82:18). The spectral data are in agreement with the literature. 13,16

1H NMR (300 MHz, CDCl₃) 3am δ 7.41 – 7.29 (m, 5H), 5.36 (m, 1H), 5.14 (s, 2H), 3.13 – 3.08 (m, 2H), 1.79 – 1.75 (m, 3H), 1.66 – 1.64 (m, 3H); 3'am δ 7.46 – 7.28 (m, 5H), 7.03 (dd, J = 15.7, 6.7 Hz, 1H), 5.85 (dd, J = 15.7, 1.5 Hz, 1H), 5.20 (s, 2H), 2.53 – 2.42 (m, 1H), 1.08 (d, J = 6.7 Hz, 6H).

13C NMR (75 MHz, CDCl₃) 3am δ 172.3 (C), 136.1 (C), 135.7 (C), 128.6 (CH), 128.2 (CH), 115.8 (CH), 66.4 (CH₂), 33.9 (CH₃), 25.7 (CH₃), 18.1 (CH₃); 3'am δ 166.9 (C), 156.2 (CH), 136.3 (C), 128.6 (CH), 128.3 (CH), 128.2 (CH) 118.4 (CH), 66.1 (CH₂), 31.1 (CH), 21.3 (CH₃).

R_f (SiO_2, n-heptane/EtOAc 9:1) 0.42.

Benzyl 3-(2-chlorophenyl)propanoate (3aq) and benzyl 2-(2-chlorophenyl)propanoate (3'aq)

![Structures of Benzyl 3-(2-chlorophenyl)propanoate and Benzyl 2-(2-chlorophenyl)propanoate]

C_{16}H_{15}ClO_2, 274.74 g mol⁻¹
Compounds 3aq and 3’aq were prepared from benzyl formate (1a, 0.38 ml, 3.0 mmol) and 2-chlorostyrene (2q, 0.58 ml, 4.5 mmol) following the general procedure. The product mixture was purified by column chromatography and obtained as colorless oil (0.51 mmol, 17%, 91:9). High polymerization rate of the remaining styrene derivative has been observed when applying the crude product mixture onto the column.

1H NMR (300 MHz, CDCl$_3$) 3aq δ 7.42 – 7.27 (m, 6H), 7.25 – 7.12 (m, 3H), 5.13 (s, 2H), 3.10 (t, $J = 7.7$ Hz, 2H), 2.72 (t, $J = 7.7$ Hz, 2H); 3’aq δ 7.42 – 7.27 (m, 6H), 7.25 – 7.12 (m, 3H), 5.17 (d, $J = 12.5$ Hz, 1H), 5.12 (d, $J = 12.1$ Hz, 1H), 4.29 (q, $J = 7.2$ Hz, 1H), 1.52 (d, $J = 7.2$ Hz, 3H).

13C NMR (75 MHz, CDCl$_3$) 3aq δ 172.6 (C), 138.1 (C), 136.0 (C), 134.1 (C), 130.6 (CH), 129.7 (CH), 128.7 (CH), 128.4 (CH), 128.0 (CH), 127.0 (CH), 66.5 (CH$_2$), 34.1 (CH$_3$), 29.1 (CH$_3$). The signals of 3’aq could not be determined due to its low concentration.

R_f (SiO$_2$, n-heptane/EtOAc 4:1) 0.47.

IR (ATR) λ 1 3065 (w), 3033 (w), 2943 (w), 2912 (vs), 2880 (s), 1732 (vs), 1572 (w), 1498 (w), 1475 (m), 1455 (m), 1444 (m), 1381 (w), 1354 (w), 1294 (m), 1151 (vs), 1121 (m), 1080 (w), 1052 (s), 1002 (m), 910 (w), 825 (w), 748 (vs), 695 (vs), 675 (s), 574 (m), 499 (w), 458 (m).

MS (GC-MS, EI) 3aq m/z (%) 274 (0.3) [M$^+$], 239 (8), 214 (35), 141 (35), 139 (9), 125 (14), 103 (19), 91 (100), 77 (24), 65 (12); 3’aq m/z (%) 274 (2) [M$^+$], 239 (17), 201 (4), 141 (31), 139, (95), 103 (37), 91 (100), 77 (28), 65 (14).

HR-MS (El) m/z calcd. for C$_{16}$H$_{15}$ClO$_2$ 274.07551; found 274.07592.
E. NMR Spectra

2-((Dicyclohexylphosphino)methyl)-1-methyl-1H-imidazole (4a)
2-((Dicyclohexylphosphino)methyl)-1-methyl-1H-imidazole (4a), 31P spectrum
[Ru(CO)₅(4a)] (6)
[Ru(CO)₃(4a)] (6)
Benzyl 3-phenylpropanoate (3aa) and benzyl 2-phenylpropanoate (3'aa)
Methyl 3-phenylpropanoate (3ba) and methyl 2-phenylpropanoate (3'ba)
Ethyl 3-phenylpropanoate (3ca) and ethyl 2-phenylpropanoate (3’ca)
Propyl 3-phenylpropanoate (3da) and propyl 2-phenylpropanoate (3'da)
Isopropyl 3-phenylpropanoate (3ea) and isopropyl 2-phenylpropanoate (3'ea)
Phenyl 3-phenylpropanoate (3\textit{ga}) and phenyl 2-phenylpropanoate (3'\textit{ga})
Benzyl 3-(o-tolyl)propanoate (3ab) and benzyl 2-(o-tolyl)propanoate (3’ab)
Benzyl 3-(m-tolyl)propanoate (3ac) and benzyl 2-(m-tolyl)propanoate (3'ac)
Benzyl 3-(naphthalen-2-yl)propanoate (3ad) and benzyl 2-(naphthalen-2-yl)propanoate (3'ad)
Benzyl 3-(3,5-bis(trifluoromethyl)phenyl)propanoate (3ae)
Benzyl 3-(3,5-bis(trifluoromethyl)phenyl)propanoate (3ae), ^{19}F spectrum
Benzyl 2-(3,5-bis(trifluoromethyl)phenyl)propanoate (3’ae)
Benzyl 2-(3,5-bis(trifluoromethyl)phenyl)propanoate (3'ae), 19F spectrum
Benzyl 3-(4-methoxyphenyl)propanoate (3af) and benzyl 2-(4-methoxyphenyl)propanoate (3'af)
Benzyl 4-phenylbutanoate (3ag), benzyl 2-methyl-3-phenylpropanoate (3'ag) and benzyl 2-phenylbutanoate (3''ag)
Benzyl 3-phenylbutanoate (3ah) in 1:3 mixture with a-methyl styrene (2h, *)
Benzyl cyclohexanecarboxylate (3ai)
Benzyl 4,4-dimethylpentanoate (3aj)
Benzyl tridecanoate (3ak) and benzyl 2-methyldodecanoate (3'ak)
Benzyl nonanoate (3al) and benzyl 2-methyloctanoate (3'al)
Benzyl 4-methylnpent-3-enolate (3am) and benzyl 4-methylnpent-2-enolate (3'am)
Benzyl 3-(2-chlorophenyl)propanoate (3aq) and benzyl 2-(2-chlorophenyl)propanoate (3’aq)
F. References