Supporting Information for:

Switchable regioselectivity in PIFA-BF$_3$Et$_2$O mediated oxidative coupling of meso-brominated Ni(II) porphyrin

Chuan-Mi Feng, Yi-Zhou Zhu,* Yun Zang, Yu-Zhang Tong and Jian-Yu Zheng*
State Key Laboratory and Institute of Elemento-organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
zhuyizhou@nankai.edu.cn; jyzheng@nankai.edu.cn

1. Instrumentations and Materials .. S2
2. Optimization of the oxidative coupling .. S2
3. The absorption spectra of various linked porphyrin dimers ... S3
4. The Procedure for the Synthesis of Singly Linked Porphyrin Dimers ... S3
5. The Procedure for the Synthesis of meso-$eta$-meso-$eta$ Doubly Fused Dimer .. S4
7. The Procedure for the Synthesis of β-β-meso-meso-β Triply Fused Dimer S5
8. SNAr reaction of 2 ... S6
9. Demetalation of 2, 3 and 6 ... S6
10. NMR Spectra of Directly Linked Porphyrin Dimers .. S8
11. Crystal Data for 2 .. S18
1. Instrumentations and Materials

All NMR solvents were used as received. Chemical shifts of NMR spectra were reported in ppm down field from internal Me₄Si. Crystal data were collected with a Agilent Technologies SuperNova single-crystal diffractometer using a confocal monochromator with Mo Kα radiation (0.71073 Å) at 273 K. All UV-vis absorption spectra were recorded using a UV-3600 UV-Vis-NIR spectrophotometer (Shimadzu, Japan). High-resolution mass spectra (HRMS) were recorded on a VG ZAB-HS mass spectrometer under electron spray ionization (ESI) and a Bruker ultra fleXtreme MALDI-TOF/TOF spectrometer. All of the solvents were purified and distilled according to the standard procedure. The commercially obtained materials were used directly without further purification unless otherwise noted. PIFA (98%) and BF₃·Et₂O (98%) were purchased from Aldrich.

2. Optimization of the oxidative coupling

Table 1 Condition Screening of Oxidative Coupling of 1 with PIFA-BF₃·Et₂O

<table>
<thead>
<tr>
<th>entry</th>
<th>1/BF₃·Et₂O/PIFA (equiv)</th>
<th>yieldb (%)</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1:0:0.5</td>
<td>0 0 90</td>
<td>1 h</td>
</tr>
<tr>
<td>2c</td>
<td>1:1:0</td>
<td>0 0 0</td>
<td>2 h</td>
</tr>
<tr>
<td>3</td>
<td>1:1:0.5</td>
<td>80 trace 0</td>
<td>30 min</td>
</tr>
<tr>
<td>4</td>
<td>1:1:0.75</td>
<td>54 25 0</td>
<td>30 min</td>
</tr>
<tr>
<td>5</td>
<td>1:1:1</td>
<td>0 75 0</td>
<td>30 min</td>
</tr>
<tr>
<td>6</td>
<td>1:1:1.5</td>
<td>0 68 0</td>
<td>30 min</td>
</tr>
<tr>
<td>7</td>
<td>1:0.5:0.5</td>
<td>80 trace 0</td>
<td>30 min</td>
</tr>
<tr>
<td>8</td>
<td>1:0.2:0.5</td>
<td>80 trace 0</td>
<td>1.5 h</td>
</tr>
<tr>
<td>9</td>
<td>1:0.5:1.0</td>
<td>0 75 0</td>
<td>30 min</td>
</tr>
</tbody>
</table>

aTo the stirred mixture of 1 and BF₃·Et₂O in CH₂Cl₂ was added dropwise a solution of PIFA in dry CH₂Cl₂ over 20 min under a nitrogen atmosphere. bIsolated yield. cCompound 1 was recovered.

Table S2. Reaction Conditions for Synthesizing Doubly and Triply Linked Porphyrin Dimers 5 and 6
To a stirred solution of 4 in dry CH₂Cl₂ was added PIFA and BF₃·Et₂O under a nitrogen atmosphere. "Isolated yield.

3. The absorption spectra of various linked Ni(II) porphyrin dimer

![Absorption Spectra](image)

Fig. S1. Ultraviolet-visible-infrared absorption spectra of fused porphyrin dimer 1 (red), 2 (blue), 3 (pink), 4 (green), 5 (yellow) and 6 (black) in CHCl₃.

4. The Procedure for the Synthesis of Singly Linked Porphyrin Dimers

For the *meso*-β linked 2

Under the nitrogen atmosphere, to a stirred solution of 1 (49 mg, 0.06 mmol) and BF₃·Et₂O (4 mg, 0.03 mmol, 0.5 equiv) in dry CH₂Cl₂ (50 mL) was added dropwise a solution of PIFA (13 mg, 0.03 mmol, 0.5 equiv) in dry CH₂Cl₂ (10 mL) over 20 min at RT. The reaction mixture was stirred for additional 10 min at the same temperature. Et₃N (0.2 mL) was added to the reaction mixture. The reaction mixture was poured into water and extracted with CHCl₃, then washed with saturated sodium bicarbonate aqueous solution twice. The combined extract was dried over anhydrous
Na₂SO₄ and then evaporated to dryness. The crude residue was purified by column chromatography (silica-gel). 2 (39 mg, 80%) was obtained after recrystallization from CHCl₃/CH₃OH.

1H NMR (400 MHz, CDCl₃, RT): δ = 9.66 (d, J = 5.0 Hz, 1H), 9.63 (s, 1H), 9.60 – 9.56 (m, 3H), 9.07 – 9.04 (m, 2H), 8.91 – 8.86 (m, 3H), 8.76 (d, J = 5.0 Hz, 2H), 8.66 (bs, 3H), 8.46 (d, J = 4.8 Hz, 1H), 8.10 (d, J = 1.7 Hz, 2H), 7.80 (d, J = 1.7 Hz, 2H), 7.71 – 7.68 (m, 4H), 1.48 – 1.40 (m, 7H).

1H NMR (400 MHz, CDCl₃, -40°C): δ = 9.66 (s, 1H), 9.68 (d, J = 5.0 Hz, 1H), 9.62 – 9.58 (m, 3H), 9.14 (d, J = 5.0 Hz, 1H), 9.10 (s, 1H), 8.96 (d, J = 5.0 Hz, 2H), 8.92 (d, J = 5.0 Hz, 1H), 8.80 (d, J = 5.0 Hz, 2H), 8.73– 8.67 (m, 3H), 8.47 (d, J = 4.8 Hz, 1H), 8.17 – 8.12 (m, 4H), 7.80 (d, J = 1.8 Hz, 2H), 7.71 (bs, 1H), 7.69 (s, 3H), 7.59 (s, 2H), 1.51 – 1.46 (m, 32H), 1.44 (s, 18H), 1.40 (s, 18H).

13C NMR (100 MHz, CDCl₃, RT): δ = 149.24, 149.09, 149.04, 145.90, 144.42, 143.90, 143.78, 143.62, 143.56, 143.34, 143.05, 142.43, 142.38, 142.24, 141.38, 139.55, 139.35, 137.88, 133.72, 133.68, 133.64, 133.20, 133.16, 133.12, 133.07, 132.52, 128.29, 128.90, 128.74, 121.46, 121.32, 121.11, 120.54, 112.16, 106.74, 102.76, 102.66, 102.47, 34.94, 31.67, 31.62.

HRMS (MALDI) m/z [M+H]+ calcd. for C₉₆H₁₀₀Br₂N₈Ni₂: 1642.5080, found 1642.5073; Ultraviolet-visible absorption : (in CHCl₃, λ max/nm, ε/mol⁻¹dm³cm⁻¹): 417 (2.14 × 10⁵), 431 (1.80 × 10⁵), 534 (3.57 × 10⁴).

For the meso-meso linked 4

Under the nitrogen atmosphere, to a stirred solution of 1 (49 mg, 0.06 mmol) in dry CH₂Cl₂ (50 mL) was added dropwise a solution of PIFA (13 mg, 0.03 mmol, 0.5 equiv) in dry CH₂Cl₂ (10 mL) over 20 min at RT. The reaction mixture was stirred for additional 50 min at the same temperature. Et₃N (0.2 mL) was added to the reaction mixture. The reaction mixture was poured into water and extracted with CHCl₃, then washed with saturated sodium bicarbonate aqueous solution twice. The combined extract was dried over anhydrous Na₂SO₄ and then evaporated to dryness. The crude residue was purified by column chromatography (silica-gel). 4 (44 mg, 90%) was obtained after recrystallization from CHCl₃/CH₃OH.

1H NMR (400 MHz, CDCl₃, RT): δ = 9.58 (d, J = 5.0 Hz, 4 H), 8.85 (d, J = 5.0 Hz, 4 H), 8.53(d, J = 5.0 Hz, 4 H), 8.02 (d, J = 5.0 Hz, 4 H), 7.83 (d, J = 1.6 Hz, 8 H), 7.66 (d, J = 4.8 Hz, 2H), 6.20 (d, J = 5.0 Hz, 2H), 1.54 (s, 36H), 1.51 (s, 36H).

13C NMR (100 MHz, CDCl₃, RT): δ = 149.00, 146.84, 143.95, 142.72, 142.26, 139.41, 133.54, 133.10, 133.00, 128.71, 121.62, 121.30, 115.83, 102.97, 34.94, 31.60..

HRMS (MALDI) m/z [M+H]+ calcd. for C₉₆H₁₀₀Br₂N₈Ni₂: 1643.5158, found 1643.5175; Ultraviolet-visible absorption : (in CHCl₃, λ max/nm, ε/mol⁻¹dm³cm⁻¹): 421 (1.64 × 10⁵), 449 (1.84 × 10⁵), 539 (4.20 × 10⁴).

5. The Procedure for the Synthesis of meso-β, meso-β Doubly Fused Dimer

Under the nitrogen atmosphere, to a stirred solution of 1 (49 mg, 0.06 mmol) and BF₃·Et₂O (4 mg, 0.03 mmol, 0.5 equiv) in dry CH₂Cl₂ (40 mL) was added dropwise a solution of PIFA (26 mg, 0.06 mmol, 1 equiv) in dry CH₂Cl₂ (10 mL) over 20 min at RT. The reaction mixture was stirred for additional 10 min at the same temperature. Et₃N (0.2 mL) was added to the reaction mixture. The reaction mixture was poured into water and extracted with CHCl₃, then washed with saturated sodium bicarbonate aqueous solution twice. The combined extract was dried over anhydrous Na₂SO₄ and then evaporated to dryness. The crude residue was purified by column chromatography (silica-gel). 3 (37 mg, 75%) was obtained after recrystallization from CHCl₃/CH₃OH.
1H NMR (400 MHz, CDCl$_3$, RT): δ = 9.21 (d, J = 5.0 Hz, 2H), 9.16 (d, J = 4.9 Hz, 2H), 8.78 (s, 2H), 8.55 – 8.51 (m, 2H), 8.48 (d, J = 5.0 Hz, 4H), 7.76 (bs, 2H), 7.64 (bs, 2H), 7.46 (d, J = 5.1 Hz, 2H), 1.70 – 1.20 (m, 72H).

1C NMR (100 MHz, CDCl$_3$, RT): δ = 149.39, 145.98, 144.82, 143.85, 142.98, 142.51, 142.13, 141.88, 139.67, 139.64, 138.68, 137.77, 137.69, 137.49, 133.53, 133.44, 133.40, 133.26, 132.36, 128.68, 128.46, 126.49, 124.04, 121.55, 121.42, 120.40, 113.23, 103.98, 34.81, 31.59.

HRMS (ESI) m/z [M]$^+$ calcd. for C$_{96}$H$_{98}$Br$_2$N$_8$Ni$_2$: 1640.4924, found 1640.4950; Ultraviolet-visible-infrared absorption: (in CHCl$_3$, λ_{max}/nm, ε/mol$^{-1}$dm3cm$^{-1}$): 412 (0.63 \times 105), 487 (0.96 \times 105), 526 (0.72 \times 105), 738 (4.07 \times 104).

6. The Procedure for the Synthesis of meso-meso, β-β Doubly Fused Dimer

Under the nitrogen atmosphere, a solution of 1 (49 mg, 0.06 mmol) and PIFA (26 mg, 0.06 mmol, 1 equiv) in dry CH$_2$Cl$_2$ (50 mL) was stirred at RT for 1 h. When the porphyrin monomer was completely consumed, BF$_3$·Et$_2$O (4 mg, 0.03 mmol, 0.5 equiv) was added to the mixture. The mixture was stirred for additional 10 min at the same temperature. Et$_3$N (0.2 mL) was added to the reaction mixture. The reaction mixture was poured into water and extracted with CHCl$_3$, then washed with saturated sodium bicarbonate aqueous solution twice. The combined extract was dried over anhydrous Na$_2$SO$_4$ and then evaporated to dryness. The crude residue was purified by column chromatography (silica-gel). 5 (41 mg, 84%) was obtained after recrystallization from CHCl$_3$/CH$_3$OH.

1H NMR (400 MHz, CDCl$_3$, -40°C): δ = 8.84 (d, J = 4.9 Hz, 2H), 8.61 (d, J = 4.9 Hz, 2H), 8.59 (d, J = 5.0 Hz, 2H), 8.57 (d, J = 5.0 Hz, 2H), 7.74 (bs, 2H), 7.63 (bs, 2H), 7.48 (d, J = 5.1 Hz, 2H), 7.15 (s, 2H), 6.98 (s, 2H), 1.67 (s, 18H), 1.64 (s, 18H), 1.43 (s, 18H), 1.22 (s, 18H).

HRMS (ESI) m/z [M]$^+$ calcd. for C$_{96}$H$_{98}$Br$_2$N$_8$Ni$_2$: 1640.4924, found 1640.4950; Ultraviolet-visible-infrared absorption: (in CHCl$_3$, λ_{max}/nm, ε/mol$^{-1}$dm3cm$^{-1}$): 412 (0.63 \times 105), 487 (0.96 \times 105), 526 (0.72 \times 105), 738 (4.07 \times 104).

7. The Procedure for the Synthesis of β-β, meso-meso, β-β Triply Fused Dimer

Under the nitrogen atmosphere, a solution of 1 (49 mg, 0.06 mmol) and PIFA (26 mg, 0.06 mmol, 1 equiv) in dry CH$_2$Cl$_2$ (50 mL) was stirred at RT for 1 h. When the porphyrin monomer was completely consumed, BF$_3$·Et$_2$O (4 mg, 0.03 mmol, 0.5 equiv) was added to the mixture. The mixture was stirred for additional 10 min at the same temperature. Et$_3$N (0.2 mL) was added to the reaction mixture. The reaction mixture was poured into water and extracted with CHCl$_3$, then washed with saturated sodium bicarbonate aqueous solution twice. The combined extract was dried over anhydrous Na$_2$SO$_4$ and then evaporated to dryness. The crude residue was purified by column chromatography (silica-gel). 6 (39 mg, 80%) was obtained after recrystallization from CHCl$_3$/petroleum ether.

1H NMR (400 MHz, VCDCl$_3$/VCS$_2$ = 4:1, RT): δ = 8.52 (d, J = 4.9 Hz, 4H), 7.77 (d, J = 4.9 Hz, 4H), 7.60 (s, 4H), 7.54 (d, J = 8.5 Hz, 8H), 7.47 (s, 4H), 7.15 (s, 2H), 1.43 (s, 72H).

13C NMR (100 MHz, VCDCl$_3$/VCS$_2$ = 4:1, RT): δ = 149.15, 147.45, 146.53, 145.52, 145.47, 138.37, 134.76, 132.04, 131.70, 127.65, 127.49, 125.01, 121.40, 113.31, 107.89, 34.81, 31.59.
HRMS (ESI) m/z [M]+ calcd. for C₉₆H₉₀Br₂N₂Ni₂: 1638.4767, found 1638.4787; Ultraviolet-visible-infrared absorption: (in CHCl₃, λ_max/nm, ε/mmol⁻¹dm³cm⁻¹): 411 (1.58 × 10⁵), 572 (1.23 × 10⁴), 651 (1.13 × 10⁴), 864 (1.72 × 10⁴), 937 (2.10 × 10⁴).

8. **S_NAr reaction of 2**

2 (40 mg, 0.02 mmol), Cs₂CO₃ (33 mg, 0.10 mmol, 5 equiv) and phenol (9 mg, 0.10 mmol, 5 equiv) were added to a 25 mL two-necked round bottom flask, then the flask was evacuated and backfilled with N₂ for 3 times. DMF (5 mL) was added using a syringe, then the reaction was heated to 100°C. The solution was continuously stirred at the temperature for 1.5 h. When compound 2 was completely consumed, the mixture was cooled down to room temperature, and water (5.0 mL) was added to precipitate the product. 8 (33 mg, 81%) was obtained after recrystallization from CHCl₃/CH₃OH.

1H NMR (400 MHz, CDCl₃, RT): δ = 9.69 (s, 1H), 9.36 (d, J = 4.9 Hz, 1H), 9.31 – 9.27 (m, 3H), 9.10 (s, 1H), 9.02 (d, J = 4.9 Hz, 1H), 8.88 – 8.78 (m, 3H), 8.48 (d, J = 4.8 Hz, 1H), 8.16 – 8.08 (m, 4H), 7.83 (d, J = 1.7 Hz, 2H), 7.72 – 7.60 (m, 4H), 7.24 – 7.19 (m, 2H), 6.95 (t, J = 7.5 Hz, 2H), 1.48 – 1.40 (m, 72H).

13C NMR (100 MHz, CDCl₃, RT): δ = 164.39, 164.33, 164.18, 164.14, 149.21, 149.06, 149.01, 146.27, 144.70, 143.88, 143.62, 143.40, 143.33, 143.31, 143.05, 143.02, 141.44, 139.85, 139.65, 139.63, 139.40, 139.37, 139.13, 137.95, 133.09, 132.97, 132.79, 132.69, 132.10, 132.00, 129.62, 129.30, 128.90, 128.76, 128.30, 128.13, 128.09, 121.80, 121.77, 121.36, 121.22, 120.99, 120.91, 120.35, 116.49, 111.63, 106.23, 35.01, 34.97, 31.69, 31.64.

HRMS (MALDI) m/z [M]+ calcd. for C₁₀₈H₁₁₀O₂N₈Ni₂: 1667.7486, found 1667.7500; Ultraviolet-visible absorption: (in CHCl₃, λ_max/nm, ε/mmol⁻¹dm³cm⁻¹): 419 (2.19 × 10⁵), 432 (2.03 × 10⁵), 530 (4.20 × 10⁴).

9. **Demetallation of 2, 3 and 6**

For meso-β singly linked dimer 7 Porphyrin dimer 2 (82 mg, 0.05 mmol) was dissolved in dry CH₂Cl₂ (20 mL) in a 100 mL round-bottomed flask. The solution was cooled to -10 °C, and then treated with 0.5 mL of H₂SO₄/TFA (1:10) 30 min. After neutralization by aqueous NaHCO₃, the solution was extracted with CH₂Cl₂, washed by brine, dried over anhydrous Na₂SO₄, and the solvent was removed undervacuum. The crude residue was purified by column chromatography (silica-gel). 7 (43 mg, 57%) was obtained after recrystallization from CHCl₃/CH₃OH.

1H NMR (400 MHz, CDCl₃, RT): δ = 9.89 (d, J = 4.9 Hz, 1H), 9.81 – 9.74 (m, 4 H), 9.70 (s, 1H), 9.24 (d, J = 4.9 Hz, 1H), 9.00 (d, J = 4.6 Hz, 2H), 8.97 (d, J = 4.8 Hz, 1H), 8.91 (d, J = 4.6 Hz, 2H), 8.81 (d, J = 4.7 Hz, 1H), 8.75 (d, J = 4.7 Hz, 2H), 8.65 (d, J = 4.7 Hz, 1H), 8.37 (d, J = 1.8 Hz, 2H), 8.14 (d, J = 1.4 Hz, 2H), 8.06 – 7.99 (4 H, m), 7.79 – 7.72 (4 m, 4 H), 1.51 – 1.49 (m, 36H), 1.49 – 1.47 (m, 36H), -2.30 (s, 2 H), -2.55 (s, 2 H).

13C NMR (100 MHz, CDCl₃, RT): δ = 149.41, 149.39, 149.27, 149.25, 149.20, 149.02, 148.91, 148.87, 146.27, 144.33, 140.72, 140.43, 140.27, 138.73, 138.64, 133.91, 133.81, 132.41, 132.32, 132.09, 131.93, 131.67, 131.30, 131.02, 130.52, 130.47, 130.40, 129.97, 129.95, 129.85, 122.65, 122.43, 121.97, 121.44, 121.26, 113.64, 107.28, 103.66, 103.46, 35.03, 35.03, 31.72, 31.69.

HRMS (MALDI) m/z [M+H]+ calcd. for C₁₀₈H₁₀₄O₂N₂Br₂: 1667.7486, found 1667.7500; Ultraviolet-visible absorption: (in CHCl₃, λ_max/nm, ε/mmol⁻¹dm³cm⁻¹): 419 (2.19 × 10⁵), 432 (2.03 × 10⁵), 530 (4.20 × 10⁴).
For fused dimers H_r-3 and H_r-6

![Diagram of porphyrin dimers](image)

Scheme S1. Demetalation reaction of 3 and 6

Porphyridimer 3 (50 mg, 0.03 mmol) was dissolved in dry CH₂Cl₂ (20 mL) in a 50 mL round-bottomed flask. The solution was treated with concentrated H₂SO₄ (0.1 mL) 30 min at RT. After neutralization by aqueous NaHCO₃, the solution was extracted with CH₂Cl₂, washed by brine, dried over anhydrous Na₂SO₄, and the solvent was removed undervacuum. The crude residue was purified by column chromatography (silica-gel). H_r-3 (35 mg, 76%) was obtained after recrystallization from CHCl₃/CH₃OH.

H_r-3:

1H NMR (400 MHz, CDCl₃, RT): δ = 9.47 (d, J = 4.6 Hz, 2H), 9.26 – 9.20 (m, 4H), 9.10 (s, 2H), 8.62 – 8.56 (m, 4H), 8.49 (d, J = 4.8 Hz, 2H), 8.11 (d, J = 1.4 Hz, 4H), 7.98 (d, J = 1.4 Hz, 4H), 7.85 – 7.78 (m, 2H), 1.59 – 1.56 (m, 72H), 0.52 (s, 4H).

13C NMR (100 MHz, CDCl₃, RT): δ = 149.33, 149.25, 147.07, 146.93, 146.10, 145.79, 145.26, 145.12, 144.51, 143.41, 143.23, 142.54, 142.31, 140.24, 138.37, 137.65, 135.61, 135.50, 135.19, 129.98, 129.88, 124.96, 124.19, 121.62, 121.41, 105.43, 94.92, 35.17, 35.11, 31.83, 31.74.

HRMS (MALDI) m/z [M+H]⁺ calcd. for C₉₆H₁₀₂Br₂N₈: 1527.6651, found 1527.6655; Ultraviolet-visible-infrared absorption : (in CHCl₃, λ_{max}/nm, ε/mol·dm³·cm⁻¹): 425 (1.31 × 10⁵), 501 (6.70 × 10⁴), 545 (5.45 × 10⁴), 616 (4.35 × 10⁴), 821 (5.50 × 10⁴).

H_r-6: Following the same procedure for demetalation of 3.

1H NMR (400 MHz, V<sub>CDCl₃/VCS₂ = 4:1, RT): δ = 8.46 – 8.38 (m, 6H), 7.65 – 7.63 (m, 6H), 7.61 – 7.57 (m, 12H), 1.46 – 1.42 (m, 72H).

13C NMR (100 MHz, V<sub>CDCl₃/VCS₂ = 4:1, RT): δ = 148.94, 147.60, 146.65, 145.47, 145.45, 138.83, 133.97, 128.95, 128.18, 125.84, 125.81, 125.53, 121.33, 114.28, 107.83, 34.73, 31.57.

HRMS (MALDI) m/z [M+H]⁺ calcd. for C₉₆H₁₀₀Br₂N₈: 1525.6494, found 1525.6508; Ultraviolet-visible-infrared absorption : (in CHCl₃, λ_{max}/nm, ε/mol·dm³·cm⁻¹): 415 (1.19 × 10⁵), 482 (5.90 × 10⁴), 565 (1.24 × 10⁵), 1044 (2.73 × 10⁴), 1090 (3.07 × 10⁴).
10. NMR Spectra of Directly Linked Porphyrin Dimers

Figure S2. 1H NMR spectrum of 2 (400 MHz, CDCl$_3$ at 25°C).

Figure S3. 1H NMR spectrum of 2 (400 MHz, CDCl$_3$ at -40°C).
Figure S4. 13C NMR spectrum of 2 (100 MHz, CDCl$_3$ at 25°C).

Figure S5. 1H NMR spectrum of 3 (400 MHz, CDCl$_3$ at 25°C).
Figure S6. 13C NMR spectrum of 3 (100 MHz, CDCl$_3$ at 25°C).

Figure S7. 1H NMR spectrum of 4 (400 MHz, CDCl$_3$ at 25°C).
Figure S8. 13C NMR spectrum of 4 (100 MHz, CDCl$_3$ at 25°C).

Figure S9. 1H NMR spectrum of 5 (400 MHz, CDCl$_3$ at 25°C).
Figure S10. 1H NMR spectrum of 5 (400 MHz, CDCl$_3$ at -40°C).

Figure S11. 13C NMR spectrum of 5 (100 MHz, CDCl$_3$ at 25°C).
Figure S12. 1H NMR spectrum of 6 (400 MHz, V$_{CDCl_3}$/V$_{CS_2}$ = 4:1 at 25°C).

Figure S13. 13C NMR spectrum of 6 (100 MHz, V$_{CDCl_3}$/V$_{CS_2}$ = 4:1 at 25°C, δ (13CS$_2$) = 192.51).
Figure S14. 1H NMR spectrum of 7 (400 MHz, CDCl$_3$ at 25°C).

Figure S15. 13C NMR spectrum of 7 (100 MHz, CDCl$_3$ at 25°C).
Figure S16. 1H NMR spectrum of 8 (400 MHz, CDCl$_3$ at 25°C).

Figure S17. 13C NMR spectrum of 8 (100 MHz, CDCl$_3$ at 25°C).
Figure S18. 1H NMR spectrum of H4-3 (400 MHz, CDCl$_3$ at 25°C).

Figure S19. 13C NMR spectrum of H4-3 (100 MHz, CDCl$_3$ at 25°C).
Figure S20. 1H NMR spectrum of H4-6 (400 MHz, $\text{CDCl}_3/\text{CS}_2 = 4:1$ at 25°C).

Figure S21. 13C NMR spectrum of H4-6 (100 MHz, $\text{CDCl}_3/\text{CS}_2 = 4:1$ at 25°C, δ (13CS) = 192.45).
11. Crystal Data for 2

<table>
<thead>
<tr>
<th>Compound reference</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical formula</td>
<td>C_{96}H_{100}Br_{2}N_{8}Ni_{2}</td>
</tr>
<tr>
<td>Formula Mass</td>
<td>1643.02</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>(a/\text{Å})</td>
<td>38.7(10)</td>
</tr>
<tr>
<td>(b/\text{Å})</td>
<td>9.0001(13)</td>
</tr>
<tr>
<td>(c/\text{Å})</td>
<td>33.3200(3)</td>
</tr>
<tr>
<td>(\alpha/°)</td>
<td>90.00</td>
</tr>
<tr>
<td>(\beta/°)</td>
<td>109.69</td>
</tr>
<tr>
<td>(\gamma/°)</td>
<td>90.00</td>
</tr>
<tr>
<td>Unit cell volume/(\text{Å}^3)</td>
<td>10927</td>
</tr>
<tr>
<td>Temperature/K</td>
<td>273(2)</td>
</tr>
<tr>
<td>Space group</td>
<td>(P21/c)</td>
</tr>
<tr>
<td>No. of formula units per unit cell, (Z)</td>
<td>4</td>
</tr>
<tr>
<td>No. of reflections measured</td>
<td>47293</td>
</tr>
<tr>
<td>No. of independent reflections</td>
<td>19023</td>
</tr>
<tr>
<td>(R_{int})</td>
<td>0.0420</td>
</tr>
<tr>
<td>Final (R_I) values ((I > 2\sigma(I)))</td>
<td>0.0994</td>
</tr>
<tr>
<td>Final (wR(F^2)) values ((I > 2\sigma(I)))</td>
<td>0.2754</td>
</tr>
<tr>
<td>Final (R_I) values (all data)</td>
<td>0.1410</td>
</tr>
<tr>
<td>Final (wR(F^2)) values (all data)</td>
<td>0.3090</td>
</tr>
</tbody>
</table>