Supporting Information

An efficient route to synthesize isatins by metal-free, iodine-catalyzed sequential C(sp3)–H oxidation and intramolecular C–N bond formation of 2'-aminoacetophenones

Venkatachalam Rajeshkumar,* Selvaraj Chandrasekar and Govindasamy Sekar*

Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamilnadu-600 036. India

Email: gsekar@iitm.ac.in

Table of contents

<table>
<thead>
<tr>
<th>Copies of 1H and 13C-NMR spectra</th>
<th>Page no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>of 2a–q</td>
<td>2–20</td>
</tr>
<tr>
<td>of 3-hydroxy-2-oxindoles 5–7</td>
<td>21–23</td>
</tr>
<tr>
<td>of oxindoles 8–10</td>
<td>24–26</td>
</tr>
</tbody>
</table>
Figure S1. 1H NMR spectrum of compound 2a (400 MHz, CDCl$_3$)

Figure S2. 13C NMR spectrum of compound 2a (100 MHz, CDCl$_3$)
Figure S3. 1H NMR spectrum of compound 2b (400 MHz, CDCl$_3$)

Figure S4. 13C NMR spectrum of compound 2b (100 MHz, CDCl$_3$)
Figure S5. 1H NMR spectrum of compound 2c (400 MHz, CDCl$_3$)

Figure S6. 13C NMR spectrum of compound 2c (100 MHz, CDCl$_3$)
Figure S7. 1H NMR spectrum of compound 2d (400 MHz, CDCl₃)

Figure S8. 13C NMR spectrum of compound 2d (100 MHz, CDCl₃)
Figure S9. 1H NMR spectrum of compound 2e (400 MHz, CDCl$_3$)

Figure S10. 13C NMR spectrum of compound 2e (100 MHz, CDCl$_3$)
Figure S11. 1H NMR spectrum of compound 2f (400 MHz, CDCl$_3$)

Figure S12. 13C NMR spectrum of compound 2f (100 MHz, CDCl$_3$)
Figure S13. 1H NMR spectrum of compound 2g (400 MHz, CDCl$_3$)

Figure S14. 13C NMR spectrum of compound 2g (100 MHz, CDCl$_3$)
Figure S15. 1H NMR spectrum of compound 2h (400 MHz, DMSO-d_6)

Figure S16. 13C NMR spectrum of compound 2h (100 MHz, DMSO-d_6)
Figure S17. 1H NMR spectrum of compound 2i (400 MHz, CDCl$_3$)

Figure S18. 13C NMR spectrum of compound 2i (100 MHz, CDCl$_3$)
Figure S19. 1H NMR spectrum of compound 2j (400 MHz, CDCl$_3$)

Figure S20. 13C NMR spectrum of compound 2j (100 MHz, CDCl$_3$)
Figure S21. 1H NMR spectrum of compound 2k (400 MHz, CDCl$_3$)

Figure S22. 13C NMR spectrum of compound 2k (100 MHz, CDCl$_3$)
Figure S23. 1H NMR spectrum of compound 2l (400 MHz, CDCl$_3$)

Figure S24. 13C NMR spectrum of compound 2l (100 MHz, CDCl$_3$)
Figure S25. 1H NMR spectrum of compound 2m (400 MHz, CDCl$_3$)

Figure S26. 13C NMR spectrum of compound 2m (100 MHz, CDCl$_3$)
Figure S27. 1H NMR spectrum of compound 2n (400 MHz, CDCl$_3$)

Figure S28. 13C NMR spectrum of compound 2n (100 MHz, CDCl$_3$)
Figure S29. 1H NMR spectrum of compound 2o (400 MHz, CDCl$_3$)

Figure S30. 13C NMR spectrum of compound 2o (100 MHz, CDCl$_3$)
Figure S31. 1H NMR spectrum of compound 2p (400 MHz, CDCl$_3$)

Figure S32. 13C NMR spectrum of compound 2p (100 MHz, CDCl$_3$)
Figure S33. 1H NMR spectrum of compound 3 (400 MHz, CDCl$_3$)

Figure S34. 13C NMR spectrum of compound 3 (100 MHz, CDCl$_3$)
Figure S35. 1H NMR spectrum of compound 5 (400 MHz, CDCl$_3$)

Figure S36. 13C NMR spectrum of compound 4 (100 MHz, CDCl$_3$)
Figure S37. 1H NMR spectrum of compound 2q (400 MHz, DMSO-d_6)

Figure S38. 13C NMR spectrum of Compound 2b (100 MHz, DMSO-d_6)
Figure S39. 1H NMR spectrum of compound 5 (400 MHz, DMSO-d_6)

Figure S40. 13C NMR spectrum of compound 5 (100 MHz, DMSO-d_6)
Figure S41. 1H NMR spectrum of compound 6 (400 MHz, CDCl$_3$)

Figure S42. 13C NMR spectrum of compound 6 (100 MHz, CDCl$_3$)
Figure S43. 1H NMR spectrum of compound 7 (400 MHz, CDCl$_3$)

Figure S44. 13C NMR spectrum of compound 7 (100 MHz, CDCl$_3$)
Figure S45. 1H NMR spectrum of compound 8 (400 MHz, CDCl$_3$)

Figure S46. 13C NMR spectrum of compound 8 (100 MHz, CDCl$_3$)
Figure S47. 1H NMR spectrum of compound 9 (400 MHz, CDCl$_3$)

Figure S48. 13C NMR spectrum of compound 9 (100 MHz, CDCl$_3$)
Figure S40. 1H NMR spectrum of compound 10 (400 MHz, CDCl$_3$)

Figure S50. 13C NMR spectrum of compound 10 (100 MHz, CDCl$_3$)