Supporting Information for:

Synthesis and evaluation of protein arginine
N-methyltransferase inhibitors designed to simultaneously occupy both substrate
binding sites

Matthijs van Haren, Linda Quarles van Ufford, Ed E. Moret, and Nathaniel I. Martin*

Department of Medicinal Chemistry & Chemical Biology,
Utrecht Institute for Pharmaceutical Sciences, Utrecht University,
David de Wied Building, Office: 5.64, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.

n.i.martin@uu.nl

Table of Contents

Page
S2-13 1H, H-H COSY, and 13C NMR spectra for final compounds 1-6
S14-21 1H and 13C NMR spectra for intermediate compounds
S22-24 Analytical RP-HPLC traces for compounds 1-6
S25 IC$_{50}$ curves for compounds 1-6 and AdoHcy
1H and 13C NMR spectra for new compounds

Compound 1: 1H NMR (400 MHz, D$_2$O)

![NMR spectrum of Compound 1](image1)

Compound 1: H-H COSY NMR (400 MHz, D$_2$O)

![COSY spectrum of Compound 1](image2)
Compound 1: 13C NMR (75 MHz, D$_2$O)
Compound 2: 1H NMR (400 MHz, D$_2$O)

![NMR spectrum image]

Compound 2: H-H COSY NMR (400 MHz, D$_2$O)

![COSY spectrum image]
Compound 2: 13C NMR (75 MHz, D$_2$O)
Compound 3: 1H NMR (400 MHz, D$_2$O)

Compound 3: H-H COSY NMR (400 MHz, D$_2$O)
Compound 3: 13C NMR (75 MHz, D$_2$O)
Compound 4: 1H NMR (400 MHz, D$_2$O)

![NMR spectrum of Compound 4](image)

Compound 4: H-H COSY NMR (400 MHz, D$_2$O)

![COSY spectrum of Compound 4](image)
Compound 4: 13C NMR (75 MHz, D$_2$O)
Compound 5: 1H NMR (400 MHz, D$_2$O)

Compound 5: H-H COSY NMR (400 MHz, D$_2$O)
Compound 5: 13C NMR (75 MHz, D$_2$O)
Compound 6: 1H NMR (400 MHz, D$_2$O)

Compound 6: H-H COSY NMR (400 MHz, D$_2$O)
Compound 6: 13C NMR (75 MHz, D$_2$O)
Compound 10: 1H NMR (300 MHz, CDCl$_3$)

Compound 10: 13C NMR (75 MHz, CDCl$_3$)
Compound 15: 1H NMR (300 MHz, CDCl$_3$)

[Chemical structure image]

Compound 15: 13C NMR (75 MHz, CDCl$_3$)

[Chemical structure image]
Compound 17: 1H NMR (300 MHz, CDCl$_3$)

Compound 17: 13C NMR (75 MHz, CDCl$_3$)
Compound 18: 1H NMR (300 MHz, CDCl$_3$)

Compound 18: 13C NMR (75 MHz, CDCl$_3$)
Compound 19: 1H NMR (300 MHz, CDCl$_3$)

Compound 19: 13C NMR (75 MHz, CDCl$_3$)
Compound 21: 1H NMR (300 MHz, CDCl$_3$)

![H NMR spectrum of Compound 21](image)

Compound 21: 13C NMR (75 MHz, CDCl$_3$)

![C NMR spectrum of Compound 21](image)
Compound 22: 1H NMR (300 MHz, CDCl$_3$)

Compound 22: 13C NMR (75 MHz, CDCl$_3$)
Compound 31: 1H NMR (300 MHz, CDCl$_3$)

Compound 31: 13C NMR (75 MHz, CDCl$_3$)
Analytical RP-HPLC traces for compounds 1-6

Compound 1

![Compound 1 diagram]

Compound 2

![Compound 2 diagram]
IC₅₀ curves of Compounds 1-6 and AdoHcy

AdoHcy - PRMT 1

IC₅₀ = 6.21 ± 0.56 µM

AdoHcy - PRMT 4

IC₅₀ = 0.67 ± 0.19 µM

AdoHcy - PRMT 6

IC₅₀ = 0.20 ± 0.25 µM

AdoHcy – G9a

IC₅₀ = 16.64 ± 6.43 µM

Compound 1 - PRMT 1

IC₅₀ = 11.09 ± 2.77 µM

Compound 1 - PRMT 4

IC₅₀ = 0.12 ± 0.02 µM

Compound 1 - PRMT 6

IC₅₀ = 20.23 ± 8.67 µM

Compound 2 - PRMT 1

IC₅₀ = 1.30 ± 0.38 µM

Compound 2 - PRMT 4

IC₅₀ = 0.56 ± 0.25 µM

Compound 2 - PRMT 6

IC₅₀ = 0.72 ± 0.33 µM

Compound 3 - PRMT 1

IC₅₀ = 16.96 ± 3.73 µM

Compound 3 - PRMT 4

IC₅₀ = 0.15 ± 0.05 µM

Compound 3 - PRMT 6

IC₅₀ = 5.15 ± 1.27 µM

Compound 4 – G9a

IC₅₀ = 3.18 ± 2.67 µM

Compound 6 - PRMT6

IC₅₀ = 3.20 ± 3.93 µM