Supporting Information

Exploiting the Narrow Gap of Rearrangement between the Substituents
in the Vicinal Disubsitution Reactions of Diaryliodonium Salts with
Pyridine N-sulfonamides

Yong Wang, Ming Li,* Lirong Wen, Peng Jing, Xiang Su, Chao Chen*
Contents

1. Condition Optimization of Product 3 .. S4
2. Condition Optimization of Product 4 .. S5
3. Spectra Data of Synthesized Compound 3aa .. S6
4. Spectra Data of Synthesized Compound 3ba .. S7
5. Spectra Data of Synthesized Compound 3ca .. S8
6. Spectra Data of Synthesized Compound 3da .. S9
7. Spectra Data of Synthesized Compound 3ea .. S10
8. Spectra Data of Synthesized Compound 3fa .. S11
9. Spectra Data of Synthesized Compound 3ga .. S12
10. Spectra Data of Synthesized Compound 3ha S13
11. Spectra Data of Synthesized Compound 3ia S14
12. Spectra Data of Synthesized Compound 3ja S15
13. Spectra Data of Synthesized Compound 3ka S16
14. Spectra Data of Synthesized Compound 3la S17
15. Spectra Data of Synthesized Compound 3ma S18
16. Spectra Data of Synthesized Compound 3na S19
17. Spectra Data of Synthesized Compound 3oa S20
18. Spectra Data of Synthesized Compound 3pa S21
19. Spectra Data of Synthesized Compound 3ab S22
20. Spectra Data of Synthesized Compound 3kb S23
21. X-ray Crystal Structure Analysis of Compound 3kb S24
22. Spectra Data of Synthesized Compound 3dc S25
23. Spectra Data of Synthesized Compound 3kd S26
24. Spectra Data of Synthesized Compound 3de S27
25. Spectra Data of Synthesized Compound 3ff S28
26. Spectra Data of Synthesized Compound 3nf S29
27. Spectra Data of Synthesized Compound 3of S30
28. Spectra Data of Synthesized Compound 3pf S31
29. Spectra Data of Synthesized Compound 3qf S32
30. Spectra Data of Synthesized Compound 3dg S33
31. Spectra Data of Synthesized Compound 4aa S34
32. Spectra Data of Synthesized Compound 4ba S35
33. Spectra Data of Synthesized Compound 4da.................................S36
34. X-ray Crystal Structure Analysis of Compound 4daS37
35. Spectra Data of Synthesized Compound 4ea.................................S38
36. Spectra Data of Synthesized Compound 4ha.................................S39
37. Spectra Data of Synthesized Compound 4ka.................................S40
38. Spectra Data of Synthesized Compound 4db.................................S41
39. Spectra Data of Synthesized Compound 4dc.................................S42
40. Spectra Data of Synthesized Compound 4dd.................................S43
41. Spectra Data of Synthesized Compound 4af.................................S44
42. Spectra Data of Synthesized Compound 4hf.................................S45
43. Spectra Data of Synthesized Compound 4kf.................................S46
44. Spectra Data of Synthesized Compound 4de.................................S47
45. Spectra Data of Synthesized Compound 4ah.................................S48
46. Spectra Data of Synthesized Compound 4hh.................................S49
47. Spectra Data of Synthesized Compound 4ff.................................S50
48. Spectra Data of Synthesized Compound 4nf.................................S51
49. Spectra Data of Synthesized Compound 4of.................................S52
50. Spectra Data of Synthesized Compound 4dg.................................S53
51. Spectra Data of Synthesized Compound 7.................................S54
52. Spectra Data of Synthesized Compound 4cf.................................S55
53. Spectra Data of Synthesized Compound 6a.................................S56
54. X-ray Crystal Structure Analysis of Compound 6a............................S57
55. Spectra Data of Synthesized Compound 6b.................................S58
Condition Optimization of Product 3\(^a\)

![Reaction Diagram]

<table>
<thead>
<tr>
<th>entry</th>
<th>Catalyst (%)</th>
<th>Solvent</th>
<th>Temp. (°C)</th>
<th>Time (h)</th>
<th>Yield (%)(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>No</td>
<td>DCE</td>
<td>120</td>
<td>48</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>No</td>
<td>DCE</td>
<td>130</td>
<td>48</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>Cu(OTf)(_2) (10)</td>
<td>DCE</td>
<td>100</td>
<td>48</td>
<td>50</td>
</tr>
<tr>
<td>4</td>
<td>Cu(OTf)(_2) (10)</td>
<td>DCE</td>
<td>80</td>
<td>48</td>
<td>80</td>
</tr>
<tr>
<td>5</td>
<td>Cu(OTf)(_2) (10)</td>
<td>DCE</td>
<td>60</td>
<td>48</td>
<td>Trace</td>
</tr>
<tr>
<td>6</td>
<td>Cu(OTf)(_2) (10)</td>
<td>DCE</td>
<td>75</td>
<td>48</td>
<td>87</td>
</tr>
<tr>
<td>7</td>
<td>Cu(OTf)(_2) (10)</td>
<td>DCE</td>
<td>75</td>
<td>12</td>
<td>92 (90)(^c)</td>
</tr>
<tr>
<td>8</td>
<td>Cu(OTf)(_2) (10)</td>
<td>DCE</td>
<td>75</td>
<td>10</td>
<td>88</td>
</tr>
</tbody>
</table>

\(^a\)The reaction was performed with 0.2 mmol \(1a\) and 0.2 mmol \(1d\). \(^b\)NMR yield. \(^c\)Isolated yield.
Condition Optimization of Product 4

Scheme:

\[2a + 1d \xrightarrow{\text{Catalyst}} 4da \]

<table>
<thead>
<tr>
<th>entry</th>
<th>Catalyst (%)</th>
<th>Solvent</th>
<th>Temp. (°C)</th>
<th>Time (h)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>No</td>
<td>DCE</td>
<td>120</td>
<td>24</td>
<td>35</td>
</tr>
<tr>
<td>2</td>
<td>No</td>
<td>DCE</td>
<td>120</td>
<td>48</td>
<td>45</td>
</tr>
<tr>
<td>3</td>
<td>No</td>
<td>DCE</td>
<td>100</td>
<td>48</td>
<td>35</td>
</tr>
<tr>
<td>4</td>
<td>No</td>
<td>DCE</td>
<td>130</td>
<td>48</td>
<td>50</td>
</tr>
<tr>
<td>5</td>
<td>Cu(OTf)₂ (5)</td>
<td>DCE</td>
<td>130</td>
<td>48</td>
<td>65</td>
</tr>
<tr>
<td>6</td>
<td>Cu(OTf)₂ (10)</td>
<td>DCE</td>
<td>130</td>
<td>48</td>
<td>80 (77)²⁶</td>
</tr>
<tr>
<td>7</td>
<td>Cu(OTf)₂ (15)</td>
<td>DCE</td>
<td>130</td>
<td>48</td>
<td>82</td>
</tr>
<tr>
<td>8</td>
<td>CuCl (10)</td>
<td>DCE</td>
<td>130</td>
<td>48</td>
<td>65</td>
</tr>
<tr>
<td>9</td>
<td>CuBr (10)</td>
<td>DCE</td>
<td>130</td>
<td>48</td>
<td>62</td>
</tr>
<tr>
<td>10</td>
<td>Cu(OAc)₂ (10)</td>
<td>DCE</td>
<td>130</td>
<td>48</td>
<td>63</td>
</tr>
<tr>
<td>11</td>
<td>Pd(OAc)₂ (10)</td>
<td>DCE</td>
<td>130</td>
<td>48</td>
<td>42</td>
</tr>
<tr>
<td>12</td>
<td>Zn(OTf)₂ (10)</td>
<td>DCE</td>
<td>130</td>
<td>48</td>
<td>22</td>
</tr>
<tr>
<td>13</td>
<td>Cu(OTf)₂ (10)</td>
<td>DCM</td>
<td>130</td>
<td>48</td>
<td>70</td>
</tr>
<tr>
<td>14</td>
<td>Cu(OTf)₂ (10)</td>
<td>Toluene</td>
<td>130</td>
<td>48</td>
<td>60</td>
</tr>
<tr>
<td>15</td>
<td>Cu(OTf)₂ (10)</td>
<td>EA</td>
<td>130</td>
<td>48</td>
<td>65</td>
</tr>
<tr>
<td>16</td>
<td>Cu(OTf)₂ (10)</td>
<td>DCE (1 eq. K₂CO₃)</td>
<td>130</td>
<td>48</td>
<td>Messy</td>
</tr>
<tr>
<td>17</td>
<td>Cu(OTf)₂ (10)</td>
<td>DCE (1 eq. EtNPr₂)</td>
<td>130</td>
<td>48</td>
<td>Messy</td>
</tr>
</tbody>
</table>

¹ The reaction was performed with 0.2 mmol 1a and 0.2 mmol 1d. ² NMR yield. ³ Isolated yield.
1H NMR, 13C NMR Spectra of all Compounds

1-(4-methyl-N-phenylphenylsulfonamido)pyridin-1-ium hexafluorophosphate(V) (3aa)

1H NMR (301 MHz, METHANOL-D4) (up) and 13C NMR (76 MHz, METHANOL-D4) (down)
1-(4-methyl-N-(o-tolyl)phenylsulfonamido)pyridin-1-ium trifluoromethanesulfonate (3ba)

$\text{H NMR (400 MHz, METHANOL-D4) (up) and}$

$\text{C NMR (101 MHz, METHANOL-D4) (down)}$
1-(4-methyl-N-(m-tolyl)phenylsulfonamido)pyridin-1-ium trifluoromethanesulfonate (3ca)

\[
\text{N} \quad \text{NTs} \quad \text{OTf}
\]

1H NMR (400 MHz, METHANOL-D4) (up) and 13C NMR (101 MHz, METHANOL-D4) (down)
1-(4-methyl-N-(p-tolyl)phenylsulfonamido)pyridin-1-ium trifluoromethanesulfonate (3da):

H NMR (301 MHz, METHANOL-D4) (up) and

13C NMR (76 MHz, METHANOL-D4) (down)
1-(N-(2,4-dimethylphenyl)-4-methylphenylsulfonamido)pyridin-1-ium trifluoromethanesulfonate (3ea)

$\text{H NMR (301 MHz, METHANOL-D4) (up) and}$

$\text{^13C NMR (76 MHz, METHANOL-D4) (down)}$
1-(N-(2-fluorophenyl)-4-methylphenylsulfonamido)pyridin-1-ium trifluoromethanesulfonate (3fa)

1H NMR (301 MHz, DMSO-D6) (up) and 13C NMR (76 MHz, DMSO-D6) (down)
1-(N-(3-fluorophenyl)-4-methylphenylsulfonamido)pyridin-1-ium trifluoromethanesulfonate (3ga)

$^1\text{H} \text{NMR (400 MHz, METHANOL-D4) (up) and}$

$^{13}\text{C} \text{NMR (101 MHz, METHANOL-D4) (down)}$
1-(N-(4-fluorophenyl)-4-methylphenylsulfonamido)pyridin-1-ium trifluoromethanesulfonate (3ha)

1H NMR (400 MHz, DMSO-D6) (up) and 13C NMR (101 MHz, DMSO-D6) (down)
1-(N-(2-chlorophenyl)-4-methylphenylsulfonamido)pyridin-1-ium trifluoromethanesulfonate (3ia)

1H NMR (400 MHz, METHANOL-D4) (up) and 13C NMR (101 MHz, METHANOL-D4) (down)
1-(N-(3-chlorophenyl)-4-methylphenylsulfonamido)pyridin-1-ium trifluoromethanesulfonate (3ja)

$\text{H} \text{NMR (400 MHz, METHANOL-D4) (up) and}$

$\text{C NMR (101 MHz, METHANOL-D4) (down)}$
1-(N-(4-chlorophenyl)-4-methylphenylsulfonamido)pyridin-1-ium trifluoromethanesulfonate (3ka)

1H NMR (400 MHz, METHANOL-D4) (up) and

13C NMR (101 MHz, METHANOL-D4) (down)
1-(N-(2-bromophenyl)-4-methylphenylsulfonamido)pyridin-1-ium trifluoromethanesulfonate (3la)

$\text{1H NMR (400 MHz, METHANOL-D4) (up) and}$

$\text{13C NMR (101 MHz, METHANOL-D4) (down)}$
1-(N-(3-bromophenyl)-4-methylphenylsulfonamido)pyridin-1-ium
trifluoromethanesulfonate (3ma)

\[\text{Br} \text{NTs} \text{OTf} \]

\[\text{Br} \text{NTs} \text{OTf} \]

\(^1\text{H NMR (400 MHz, METHANOL-D4)} \) (up) and
\(^{13}\text{C NMR (101 MHz, METHANOL-D4)) (down)} \)
1-(N-(4-bromophenyl)-4-methylphenylsulfonamido)pyridin-1-ium trifluoromethanesulfonate (3na)

$\text{H NMR (301 MHz, DMSO-D6) (up) and } ^{13}\text{C NMR (76 MHz, DMSO-D6) (down)}$
1-(4-methyl-N-(4-(trifluoromethoxy)phenyl)phenylsulfonamido)pyridin-1-ium trifluoromethanesulfonate (3oa)

\[\text{1H NMR (400 MHz, METHANOL-D4) (up) and 13C NMR (101 MHz, METHANOL-D4) (down)} \]
1-(4-methyl-N-(4-(trifluoromethyl)phenyl)phenylsulfonamido)pyridin-1-ium trifluoromethanesulfonate (3pa)

1H NMR (301 MHz, DMSO-D$_6$) (up) and 13C NMR (76 MHz, DMSO-D$_6$) (down)
2-methyl-1-(4-methyl-N-phenylphenylsulfonamido)pyridin-1-ium trifluoroacetate (3ab)

^{1}H NMR (400 MHz, METHANOL-D4) (up) and ^{13}C NMR (101 MHz, METHANOL-D4) (down)
1-(N-(4-chlorophenyl)-4-methylphenylsulfonamido)-2-methylpyridin-1-ium trifluoromethanesulfonate (3kb)

1H NMR (301 MHz, METHANOL-D4) (up) and 13C NMR (76 MHz, METHANOL-D4) (down)
X-ray crystal structure analysis of compound 3kb: Single crystals suitable for X-ray analysis were obtained by slow evaporation of its solution in CH$_3$OH. The crystal structure has been deposited at the Cambridge Crystallographic Data Centre and allocated the deposition number: CCDC 1008472. Formula: C$_{20}$H$_{18}$ClF$_3$N$_2$O$_5$S$_2$, $M = 522.95$, colourless crystal, 0.20 x 0.14 x 0.13 mm, $a = 8.6089(17)$, $b = 8.8898(18)$, $c = 15.632(3)$ Å, $\alpha = 98.35(3)$, $\beta = 96.13(3)$, $\gamma = 104.16(3)$, $V = 1135.0(4)$ Å3, $\rho_{\text{calc}} = 1.530$ gcm$^{-3}$, $\mu = 0.412$ mm$^{-1}$, $Z = 2$, Triclinic, space group $P-1$, $\lambda = 0.71073$ Å, $T = 173(2)$ K. Data completeness = 0.987, Theta (max) = 27.46, R (reflections) = 0.0884, wR2 (reflections) = 0.2084 (5129).
3-methyl-1-(4-methyl-N-(p-tolyl)phenylsulfonamido)pyridin-1-ium trifluoromethanesulfonate (3dc)

1H NMR (301 MHz, METHANOL-D4) (up) and

13C NMR (76 MHz, METHANOL-D4) (down)
1-(N-(4-chlorophenyl)-4-methylphenylsulphonamido)-4-methylpyridin-1-ium trifluoromethanesulfonate (3kd)

1H NMR (301 MHz, METHANOL-D4) (up) and
13C NMR (76 MHz, METHANOL-D4) (down)
3-ethoxy-1-(4-methyl-N-(p-tolyl)phenylsulfonamido)pyridin-1-ium trifluoromethanesulfonate (3de)

1H NMR (400 MHz, METHANOL-D4) (up) and 13C NMR (101 MHz, METHANOL-D4) (down)
3-chloro-1-(N-(2-fluorophenyl)-4-methylphenylsulfonamido)pyridin-1-ium trifluoromethanesulfonate (3ff)

\[\text{N} \quad \text{NTs} \quad \text{OTf} \]
\[\text{Cl} \]
\[\text{F} \]

\[\text{N} \quad \text{NTs} \quad \text{OTf} \]
\[\text{Cl} \]
\[\text{F} \]

\(^1\)H NMR (400 MHz, METHANOL-D4) (up) and
\(^{13}\)C NMR (101 MHz, METHANOL-D4) (down)
1-(N-(4-bromophenyl)-4-methylphenylsulfonamido)-3-chloropyridin-1-ium trifluoromethanesulfonate (3nf)

1H NMR (400 MHz, METHANOL-D4) (up) and 13C NMR (101 MHz, METHANOL-D4) (down)
3-chloro-1-(4-methyl-N-(4-(trifluoromethoxy)phenyl)phenylsulfonamido)pyridinium trifluoromethanesulfonate (3of)

1H NMR (400 MHz, METHANOL-D4) (up) and 13C NMR (101 MHz, DMSO-D6) (down)
3-chloro-1-(4-methyl-N-(4-(trifluoromethyl)phenyl)phenylsulfonamido)pyridin-1-ium trifluoromethanesulfonate (3pf)

1H NMR (400 MHz, DMSO-D6) (up) and 13C NMR (101 MHz, DMSO-D6) (down)
3-chloro-1-(N-(4-(methoxycarbonyl)phenyl)-4-methylphenylsulfonamido)pyridin-1-ium trifluoromethanesulfonate (3qf)

1H NMR (400 MHz, METHANOL-D4) (up) and 13C NMR (101 MHz, METHANOL-D4) (down)
$1\text{-}(N\text{-}(p\text{-tolyl})\text{phenylsulfonamido})\text{pyridin-1-i um trifluoromethanesulfonate (3dg)}$

$^1\text{H NMR (400 MHz, METHANOL-D4) (up) and}$

$^{13}\text{C NMR (101 MHz, METHANOL-D4) (down)}$
1-(2-(4-methylphenylsulfonamido)phenyl)pyridin-1-ium hexafluorophosphate(V) (4aa)

H NMR (301 MHz, DMSO-D6) (up) and 13C NMR (76 MHz, DMSO-D6) (down)
1-(3-methyl-2-(4-methylphenylsulfonamido)phenyl)pyridin-1-ium trifluoromethanesulfonate (4ba)

1H NMR (400 MHz, METHANOL-D4) (up) and 13C NMR (76 MHz, METHANOL-D4) (down)
1-(5-methyl-2-(4-methylphenylsulfonamido)phenyl)pyridin-1-ium trifluoromethanesulfonate (4da)

1H NMR (301 MHz, METHANOL-D4) (up) and
13C NMR (76 MHz, METHANOL-D4) (down)
X-ray crystal structure analysis of compound 4da: Single crystals suitable for X-ray analysis were obtained by slow evaporation of its solution in CH₃OH. The crystal structure has been deposited at the Cambridge Crystallographic Data Centre and allocated the deposition number: **CCDC 1008474**. Formula: C₁₉H₁₉F₆N₂O₂PS, $M = 484.40$, colourless crystal, 0.48 x 0.43 x 0.26 mm, $a = 15.338(3)$, $b = 10.040(2)$, $c = 14.189(3) \text{ Å}$, $\alpha = 90$, $\beta = 94.34(3)$, $\gamma = 90$, $V = 2178.7(8) \text{ Å}^3$, $\rho_{\text{calc}} = 1.477$ gcm$^{-3}$, $\mu = 0.291$ mm$^{-1}$, $Z = 4$, Monoclinic, space group $P2(1)c$, $\lambda = 0.71073$ Å, $T = 173(2)$ K. Data completeness = 0.997, Theta (max) = 27.48, R (reflections) = 0.0811, wR₂ (reflections) = 0.2007 (4971).
1-(3,5-dimethyl-2-(4-methylphenylsulfonamido)phenyl)pyridin-1-ium trifluoromethanesulfonate (4ea)
1-(5-fluoro-2-(4-methylphenylsulfonamido)phenyl)pyridin-1-ium trifluoromethanesulfonate (4ha)

N

OTf

NHTs

F

OTf

NHTs

F

^1H NMR (301 MHz, METHANOL-D4) (up) and ^{13}C NMR (76 MHz, METHANOL-D4) (down)
1-(5-chloro-2-(4-methylphenylsulfonamido)phenyl)pyridin-1-ium trifluoromethanesulfonate (4ka)

\[\text{N} \quad \text{Cl} \quad \text{NHTs} \quad \text{OTf} \quad \text{N} \quad \text{Cl} \quad \text{NHTs} \quad \text{OTf} \]

\(^1H\text{ NMR (301 MHz, METHANOL-D4)}\) (up) and \(^{13}C\text{ NMR (76 MHz, METHANOL-D4)}\) (down)
2-methyl-1-(5-methyl-2-(4-methylphenylsulfonamido)phenyl)pyridin-1-ium trifluoromethanesulfonate (4db)

1H NMR (400 MHz, METHANOL-D4) (up) and 13C NMR (101 MHz, METHANOL-D4) (down)
3-methyl-1-(5-methyl-2-(4-methylphenylsulfonamido)phenyl)pyridin-1-ium trifluoromethanesulfonate (4dc)

1H NMR (301 MHz, METHANOL-D4) (up) and 13C NMR (76 MHz, METHANOL-D4) (down)
4-methyl-1-(5-methyl-2-(4-methylphenylsulfonamido)phenyl)pyridin-1-ium trifluoromethanesulfonate (4dd)

$\text{1H NMR (400 MHz, METHANOL-D4)}$ (up) and $\text{13C NMR (101 MHz, METHANOL-D4)}$ (down)
3-chloro-1-(2-(4-methylphenylsulfonamido)phenyl)pyridin-1-ium trifluoromethanesulfonate (4af)

1H NMR (301 MHz, METHANOL-D4) (up) and 13C NMR (76MHz, METHANOL-D4) (down)
3-chloro-1-(5-fluoro-2-(4-methylphenylsulfonamido)phenyl)pyridin-1-ium trifluoromethanesulfonate (4hf)

\[
\begin{align*}
\text{OTf} & \quad \text{NHTs} \\
\text{Cl} & \quad \text{F}
\end{align*}
\]

\(^1\text{H NMR (301 MHz, METHANOL-D4) (up) and}
\(^{13}\text{C NMR (76 MHz, METHANOL-D4) (down)}\)
3-fluoro-1-(5-fluoro-2-(4-methylphenylsulfonamido)phenyl)pyridin-1-ium trifluoromethanesulfonate (4kf)

1H NMR (301 MHz, METHANOL-D4) (up) and 1C NMR (76 MHz, METHANOL-D4) (down)
3-ethoxy-1-(5-methyl-2-(4-methylphenylsulfonamido)phenyl)pyridin-1-ium hexafluorophosphate(V) (4de)

\[\text{N} N\text{HTs} \quad \text{OEt} \quad \text{PF}_6 \quad \text{N} N\text{HTs} \quad \text{OEt} \quad \text{PF}_6\]

\(^1\text{H NMR (301 MHz, METHANOL-D4) (up) and} \)

\(^{13}\text{C NMR (76 MHz, METHANOL-D4) (down)} \)
3-fluoro-1-(2-(4-methylphenylsulfonamido)phenyl)pyridin-1-ium trifluoromethanesulfonate (4ah)

1H NMR (301 MHz, METHANOL-D4) (up) and 13C NMR (76 MHz, METHANOL-D4) (down)
3-fluoro-1-(5-fluoro-2-(4-methylphenylsulfonamido)phenyl)pyridin-1-ium trifluoromethanesulfonate (4hh)

1H NMR (600 MHz, METHANOL-D4) (up) and 13C NMR (151 MHz, METHANOL-D4) (down)
3-chloro-1-(3-fluoro-2-(4-methylphenylsulfonamido)phenyl)pyridin-1-ium trifluoromethanesulfonate (4ff)

$\text{^1H NMR (400 MHz, METHANOL-D4) (up) and}$

$\text{^13C NMR (151 MHz, METHANOL-D4) (down)}$
1-(5-bromo-2-(4-methylphenylsulfonamido)phenyl)-3-chloropyridin-1-ium trifluoromethanesulfonate (4nf)

H NMR (400 MHz, DMSO-D6) (up) and 13C NMR (101 MHz, DMSO-D6) (down)
3-chloro-1-(2-(4-methylphenylsulfonamido)-5-(trifluoromethoxy)phenyl)pyridin-1-ium trifluoromethanesulfonate (4of)

$\text{^{1}H NMR (400 MHz, METHANOL-D4) (up) and}$

$\text{^{13}C NMR (101 MHz, DMSO-D6) (down)}$
1-(5-methyl-2-(phenylsulfonamido)phenyl)pyridin-1-ium trifluoromethanesulfonate (4dg)

O^+TF_2 NHBs

O^+TF_2 NHBs

1H NMR (400 MHz, METHANOL-D4) (up) and 13C NMR (101 MHz, METHANOL-D4) (down)
methyl 4-(4-methylphenylsulfonamido)benzoate (7)

1H NMR (400 MHz, CDCl$_3$) (up) and 13C NMR (101 MHz, CDCl$_3$) (down)
3-chloro-1-(4-methyl-2-(4-methylphenylsulfonamido)phenyl)pyridin-1-ium trifluoromethanesulfonate (4cf-1)

3-chloro-1-(2-methyl-6-(4-methylphenylsulfonamido)phenyl)pyridin-1-ium trifluoromethanesulfonate (4cf-2)

1H NMR (400 MHz, METHANOL-D4) (up) and 13C NMR (101 MHz, METHANOL-D4) (down)
(Z)-1-((phenoxy(phenyl)methylene)amino)pyridin-1-ium hexafluorophosphate(V) (6a)

1H NMR (301 MHz, DMSO-D6) (up) and 13C NMR (76 MHz, DMSO-D6) (down)
X-ray crystal structure analysis of compound 6a: Single crystals suitable for X-ray analysis were obtained by slow evaporation of its solution in CH₃OH. The crystal structure has been deposited at the Cambridge Crystallographic Data Centre and allocated the deposition number: CCDC 1008473. Formula: C₁₈H₁₅F₆N₂OP, $M = 420.29$, colourless crystal, 0.28 x 0.25 x 0.19 mm, $a = 13.927(3)$, $b = 10.771(2)$, $c = 24.361(5)$ Å, $\alpha = 90$, $\beta = 93.49(3)$, $\gamma = 90$, $V = 3647.6(13)$ Å³, $\rho_{calc} = 1.531$ gcm⁻³, $\mu = 0.221$ mm⁻¹, $Z = 8$, Monoclinic, space group $C2/c$, $\lambda = 0.71073$ Å, $T = 173(2)$ K. Data completeness = 0.997, Theta (max) = 27.47, R (reflections) = 0.0567, wR2 (reflections) = 0.1107 (4173).
(Z)-3-methyl-1-((phenoxy(phenyl)methylene)amino)pyridin-1-ium hexafluorophosphate(V) (6b)

1H NMR (301 MHz, DMSO-D6) (up) and 13C NMR (76 MHz, DMSO-D6) (down)