Supporting Information

1. General Information.. S2
 a. Materials
 b. HPLC

2. Experimental Section.. S2
 a. Synthesis of thioacid from H-LYRAG-NHNH$_2$
 b. Compared the synthesis of thioacid from H-LYRAG-MESNa with or without thiol
 c. Compared the synthesis of thioacid with different residues
 d. Racemization test
 e. Fluorescence labeling of LC3 ans Ub by thioacid based ligation

3. Spectra... S9
1. General Information

a. Materials

All peptide or chemical reagents and solvents were purchased from CS Bio Co. (shanghai), GL Biochem (shanghai), Aladdin-reagent Co. (shanghai), Sinopharm Chemical Reagent Co. Ltd., Alfa Aesar China Co. Ltd., J&K Chemical Co. Ltd. TLC was executed on plates pre-coated with silica gel 60 F254 (250 layer thickness). Visualization was achieved using UV light, iodine vapors, permanganate solution. Column chromatographic purification of products was achieved using forced-flow chromatography on Silica Gel (200-300 mesh on small-scale or 300-400 mesh on large-scale). Manual peptide-synthesis apparatus was using peptide synthesis vessel and in a constant-temperature shaker at 30℃. Automated peptide-synthesis apparatus was using a CS Bio 136XT automated synthesizer conducting with a 0.25 mmol resin scale.

b. HPLC

Analytical HPLC was conducted on a SHIMADZU (Prominence LC-20AT) instrument utilizing an analytical column (Grace Vydac “Peptide C18 or C8”, 150 × 4.6 mm, flow rate 1.2 mL/min, RT). Analytical samples were monitored at 214 and 254 nm. Semi-preparative HPLC was conducted on a SHIMADZU (Prominence LC-20AT) instrument utilizing a semi-preparative column (Grace Vydac “Peptide C18”, 250 × 10 mm, flow rate 4.0 mL/min, rt). Solvent A was 0.08% trifluoroacetic acid in acetonitrile, and solvent B was 0.1% trifluoroacetic acid in water. Both solvents were leached through 0.22 μm filter paper and ultrasonicated for 30 min before use.
2. Experimental Section

a. Synthesis of thioacid from H-LYRAG-NHNH₂

Figure S1: The chromatogram of the synthesis of thioacid from H-LYRAG-NHNH₂ under different conditions.

b. Compared the synthesis of thioacid from H-LYRAG-MESNa with or without thiol
Figure S2: HPLC (λ = 214 nm) analysis of the conversion of peptide thioacids from thioesters with or without added MESNa (1 mM, pH 7.0, 20°C).

c. Compared the synthesis of thioacids with different residues
Figure S3: The chromatogram of the synthesis of thioacid from H-LYRAX-NHNH$_2$.

Table S1: Synthesis of thioacid from H-LYRAX-NHNH$_2$

<table>
<thead>
<tr>
<th>Entry</th>
<th>X</th>
<th>Time(h)a</th>
<th>Isolated yield[%]b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ser</td>
<td>1.5</td>
<td>51 (1.6 mg)</td>
</tr>
<tr>
<td>2</td>
<td>Phe</td>
<td>1.5</td>
<td>50 (1.7 mg)</td>
</tr>
<tr>
<td>3</td>
<td>Ala</td>
<td>2.5</td>
<td>46 (1.4 mg)</td>
</tr>
<tr>
<td>4</td>
<td>Leu</td>
<td>3.0</td>
<td>47 (1.5 mg)</td>
</tr>
<tr>
<td>5</td>
<td>Val</td>
<td>7.0</td>
<td>32 (1.0 mg)</td>
</tr>
<tr>
<td>6</td>
<td>Val (pH 9.0)</td>
<td>>12</td>
<td>42 (1.3 mg)</td>
</tr>
<tr>
<td>7</td>
<td>Pro</td>
<td>>12</td>
<td>35 (1.1 mg)</td>
</tr>
<tr>
<td>8</td>
<td>Pro(pH 9.0)</td>
<td>>12</td>
<td>32 (1.0 mg)</td>
</tr>
</tbody>
</table>

a: began with thioester; b: 5 mM peptide hydrazides

d. Racemization test
e. Fluorescence labeling of protein by thioacid based ligation

1H NMR (400 MHz, CDCl$_3$): δ(ppm) 8.49 (d, $J = 8.4$ Hz, 1H), 8.17 (d, $J = 7.2$ Hz, 1H), 8.07 (d, $J = 8.4$ Hz, 1H), 7.46 (dd, $J_1 = J_2 = 8.4$ Hz, 1H), 7.39 (dd, $J_1 = J_2 = 7.2$ Hz, 1H), 7.06 (d, $J = 7.2$ Hz, 1H), 2.71 (s, 6H).

13C NMR (100 MHz, CDCl$_3$): δ(ppm) 152.1, 133.6, 132.7, 130.0, 129.9, 129.6, 129.2, 122.9, 118.6, 115.8, 45.3.
Figure S5: The NMR spectra and Mass Spectrometry of Dansyl-N$_3$. (ESI found [M+H]$^+$: 277.3, calc for: 276.0).

Ub sequence:
MQIFVKTITLGEPSDIENVKAIKGDKEGWPDQQLFAAGQLEDGLSLDYNQKESTHLVLR

Ub-NHNH$_2$ (2.4 mg, 1 mM) was dissolved in 200 μL buffer (6 M Gn-Cl, 100 mM NaH$_2$PO$_4$, pH 3.0) and cooled in an ice bath (-10 °C). 36 μL of aqueous 50 mM NaNO$_2$ solution was added and the reaction was incubated for 20 min. MESNa (1.5 mg) was added and the pH was adjusted to 5.0-6.0. Reaction was incubated for 20 min and adjusted the pH to about 1.0. 60 μL of aqueous 1 M Na$_2$S was added and then adjusted the pH to 7.0. The reaction was detected by analytical RP-HPLC and isolated by semi-preparative RP-HPLC.

Ub-SH (0.4 mg) was dissolved in 100 μL buffer (6 M Gn-Cl, 100 mM NaH$_2$PO$_4$, pH 7.0) and 100 μL DMSO. 15 μL of 0.6 M Dansyl-N$_3$ and 0.5 μL 2, 6-lutidine were added. The reaction was detected by analytical RP-HPLC.
Figure S6: The Mass Spectrometry of Ub-NHNH$_2$ (ESI found 8522.3, calc for 8521.8), Ub-SH (ESI found 8524.1, calc for 8523.8) and Ub-Dansyl (ESI found 8740.6, calc for 8739.8).

LC3 sequence:
PSEKTFQRRSFEQRVEDVRLIREQHPKQIREKLYGKQPVLQDKFIQVPMHVNMSLKIIRQL
NANQAFFLLVNGHSMVSTPISEVYESERDEDFLVMYASQETF
3. Spectra

1) LYRAG-NHN$\textsubscript{2}$

ESI found [M+H]$^+$ 593.32, calc for 592.6

2) LYRAG-MESNa

ESI found [M+H]$^+$ 703.25, calc for 701.6
3) LYRAG-MPAA

ESI found \([\text{M+H}]^+\) 729.34, calc for 728.6

4) LYRAG-EDT

ESI found \([\text{M+H}]^+\) 655.30, calc for 654.6
5) LYRAG-NH₂

ESI found [M+H]⁺ 578.32, calc for 577.6

6) LYRAG-SH

ESI found [M+H]⁺ 595.28, calc for 594.6
7) LYRAA-NHNH$_2$

ESI found 606.6, calc for 606.7

8) LYRAA-MESNa

ESI found 716.3, calc for 715.8
9) LYRAA-SH

ESI found 608.3, calc for 608.7

10) LYRAS-NNH$_2$

ESI found 622.4, calc for 622.7
11) LYRAS-MESNa

ESI found [M+H]$^+$ 733.3, calc for 731.8

12) LYRAS-SH

ESI found 624.4, calc for 624.7
13) LYRAF-NHNH$_2$

ESI found 682.4, calc for 682.8

14) LYRAF-MESNa

ESI found [M+H]$^+$ 793.38, calc for 791.9
15) LYRAF-SH

ESI found 684.4, calc for 684.8

16) LYRAL-NNH₂

ESI found 648.5, calc for 648.8
17) LYRAL-MESNa

ESI found [M+H]$^+$ 759.4, calc for 757.9

18) LYRAL-SH

ESI found 650.4, calc for 650.8
19) LYRAV-NHNH$_2$

ESI found 634.5, calc for 634.7

20) LYRAV-MESNa

ESI found [M+H]$^+$ 745.4, calc for 743.9
21) LYRAV-SH

ESI found 636.4, calc for 636.8

22) LYRAP-NHNH₂

ESI found [M+H]⁺ 633.4, calc for 632.7
23) LYRAP-MESNa

ESI found 742.4, calc for 741.9

24) LYRAP-SH

ESI found 634.4, calc for 634.8
25) Bn-LY(Bn)F(L)-NHNH$_2$

ESI found [M+H]$^+$ 636.24, calc for 635.3

26) Bn-LY(Bn)F(D)-NHNH$_2$

ESI found [M+H]$^+$ 636.28, calc for 635.3
27) Bn-LY(Bn)F(L)-SH

ESI found [M+H]+ 638.20, calc for 637.3

28) Bn-LY(Bn)F(D)-SH

ESI found [M+H]+ 638.18, calc for 637.3
29) Ub-NHNH₂

ESI found 8522.3, calc for 8521.8

30) Ub-MESNa

ESI found 8632.4, calc for 8630.8
31) Ub-SH

ESI found 8524.1, calc for 8523.8

32) Ub-Dansyl

ESI found 8740.6, calc for 8739.8
33) LC3-NH₂

ESI found 14026.7, calc for 14026.1

34) LC3-SH

ESI found 14029.2, calc for 14028.2
35) LC3-Dansyl

ESI found 14244.5, calc for 14244.2

36) H-M1-A22-NHNH₂

ESI found 2420.1, calc for 2420.8
37) H-M1-A22-SH

ESI found 2422.36, calc for 2422.8

38) Npys-C23-A42-OH (the cys 40 was modified by Acm)

ESI found 2274.01, calc for 2274.5
39) H-M1- A42-OH (the cys 40 was modified by Acm)

ESI found 4509.2, calc for 4509.3

40) H-M1- A42-OH

ESI found 4437.48, calc for 4438.3