Supplementary Information

to

Conformational equilibria in the selected A-type trimeric procyanidins

by

Marta K. Dudek (Jamróz)a,*, Sławomir Kaźmierskiab, Kamil Stefaniaka, Vitold B. Glińskić, Jan A. Glińskić

a Physical Chemistry Department, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02097 Warsaw, Poland,
b Centre of Molecular and Macromolecular Studies PAS, Sienkiewicza 112, 90363 Lodz, Poland, kaslawek@cbmm.lodz.pl
c Planta Analytica LLC, 39 Rose Street, Danbury, CT 06810, USA, jan@plantaanalytica.com
CONTENT:

1H NMR spectrum of 1 in MeOD page 3
1H NMR spectrum of 1 in DMSO page 4
1H NMR spectrum of 1 in acetone-d$_6$ page 5
1H NMR spectrum of 1 in pyridine-d$_5$ page 6
1H NMR spectrum of 2 in MeOD page 7
1H NMR spectrum of 2 in DMSO page 8
1H NMR spectrum of 2 in acetone-d$_6$ page 9
1H NMR spectrum of 2 in pyridine-d$_5$ page 10
1H NMR spectrum of 3 in MeOD page 11
1H NMR spectrum of 3 in DMSO page 12
1H NMR spectrum of 3 in acetone-d$_6$ page 13
1H NMR spectrum of 3 in pyridine-d$_5$ page 14
1H NMR spectrum of 4 in MeOD page 15
1H NMR spectrum of 4 in DMSO page 16
1H NMR spectrum of 4 in acetone-d$_6$ page 17
1H NMR spectrum of 4 in pyridine-d$_5$ page 18

Table 1SI (computational data for the lowest-energy conformers) page 19

Signal assignment for minor and major rotamers of 1-4 in MeOD and DMSO-d$_6$ pages 20-25

ΔG^{298} calculations procedure from the 1H temperature NMR spectra page 26
Cinnamtannin B-1 (1) in MeOD
Cinnamtain B-1 (1) in DMSO
Cinnamottannin B-1 (1) in acetone-d$_6$
Cinnamtannin B-1 (1) in pyridine-d$_5$
Cinnamtannin D-1 (2) in MeOD
Cinnamtannin D-1 (2) in DMSO
Cinnamtannin D-1 (2) in acetone-d$_6$
Cinnamtannin D-1 (2) in pyridine-d$_5$
Aesculitannin B (3) in MeOD
Aesculitannin B (3) in DMSO
Aesculitannin B (3) in acetone-d_6
Aescultannin B (3) in pyridine-d$_5$
Lindetannin (4) in MeOD
Lindetannin (4) in DMSO
Lindetannin (4) in acetone-d_6
Lindetannin (4) in pyridine-d$_5$
Table S11. Internal energies (E) and Gibbs free energies (ΔG) differences between the two lowest-energy conformers of 1-4 (in kcal/mol) calculated with two functionals: B3LYP and M062X and 6-31G(d,p) basis set.

<table>
<thead>
<tr>
<th></th>
<th>B3LYP</th>
<th></th>
<th>M062X</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>φ [°]</td>
<td>E</td>
<td>ΔG</td>
<td>φ [°]</td>
<td>E</td>
<td>ΔG</td>
</tr>
<tr>
<td>(1)</td>
<td>-91.0</td>
<td>0.2</td>
<td>0</td>
<td>-90.3</td>
<td>3.6</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td>+89.8</td>
<td>0</td>
<td>1.7</td>
<td>+90.7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(2)</td>
<td>-95.6</td>
<td>2.3</td>
<td>0</td>
<td>-88.2</td>
<td>4.9</td>
<td>1.9</td>
</tr>
<tr>
<td></td>
<td>+91.9</td>
<td>0</td>
<td>2.3</td>
<td>+92.5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(3)</td>
<td>-100.4</td>
<td>5.3</td>
<td>2.3</td>
<td>-99.1</td>
<td>7.0</td>
<td>5.1</td>
</tr>
<tr>
<td></td>
<td>+85.8</td>
<td>0</td>
<td>0</td>
<td>+84.4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(4)</td>
<td>-102.5</td>
<td>15.1</td>
<td>0</td>
<td>-99.9</td>
<td>21.4</td>
<td>17.5</td>
</tr>
<tr>
<td></td>
<td>+80.0</td>
<td>0</td>
<td>7.8</td>
<td>+80.1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Signal assignment for minor and major rotamers of 1-4 in MeOD and DMSO-d$_6$

Cinnamtannin B1 (1). Major rotamer in MeOD (integral 1.0): 1H NMR (500 MHz, $T = 270$K): δ 2.83 (br, 2H, H-4"), 3.25 (d, 1H, $^3J = 3.4$Hz, H-3), 3.85 (br s, 1H, H-3"), 4.08 (s, 1H, H-3'), 4.13 (d, 1H, $^3J = 3.0$Hz, H-4), 4.40 (br, 1H, H-2"), 4.56 (s, 1H, H-4'), 5.70 (s, 1H, H-2'), 5.77 (s, 1H, H-6'), 5.96 (d, 1H, $^4J = 1.8$Hz, H-8), 5.99 (d, 1H, $^4J = 1.8$Hz, H-6), 6.08 (s, 1H, H-6"), 6.74 (br, 2H, H-15, H-16"), 6.81 (br, 3H, H-16, H-15', H-12"), 6.83 (d, 1H, $^3J = 8.0$Hz, H-15"), 7.01 (H-12), 7.21 (br d, 1H, H-12'), 7.32 (br s, 1H, H-12'); 13C NMR (126 MHz): δ 29.0 (C-4), 30.0 (C-4"), 38.4 (C-4'), 67.3 (C-3), 67.7 (C-3"), 72.7 (C-3'), 79.0 (C-2'), 80.4 (C-2"), 96.2 (C-6'), 96.7 (C-6, C-6''), 98.4 (C-8), 100.1 (C-2, C-10''), 105.1 (C-10), 106.5 (C-8'), 106.8 (C-10'), 109.0 (C-8''), 115.6 (C-12''), 115.9 (C-12, C-15', C-15''), 116.1 (C-15), 116.8 (C-12'), 119.5 (C-16''), 120.0 (C-16), 121.5 (C-16'), 131.9 (C-11'), 132.5 (C-11), 133.3 (C-11''), 145.4 (C-14''), 145.6 (C-13, C-13''), 146.0 (C-13'), 146.4 (C-14'), 146.7 (C-14), 151.2 (C-7'), 151.9 (C-9'), 154.3 (C-5), 155.7 (C-9''), 155.8 (C-5''), 155.9 (C-5''), 156.1 (C-7''), 156.9 (C-9), 158.0 (C-7). Minor rotamer in MeOD (integral 0.30): 1H NMR (500 MHz, $T = 270$K): δ 2.80 (overlapped, H-4"a), 2.94 (dd, 1H, $^2J = 17.0$Hz, $^3J = 4.9$Hz, H-4"b), 3.89 (br s, 1H, H-3'), 4.06 (d, 1H, $^3J = 3.4$Hz, H-3), 4.24 (br, 1H, H-3''), 4.43 (d, 1H, $^3J = 3.0$Hz, H-4), 4.66 (s, 1H, H-4'), 4.96 (s, 1H, H-2''), 5.25 (s, 1H, H-2'), 5.89 (s, 1H, H-6'), 6.01 (d, 1H, $^4J = 1.9$Hz, H-6), 6.06 (d, 1H, $^4J = 1.9$Hz, H-8), 6.10 (s, 1H, H-6''), 6.73 (overlapped, H-15), 6.76 (d, 1H, $^3J = 8.0$Hz, H-15''), 6.80 (overlapped, H-15'), 6.86 (br d, 1H, $^3J = 8.4$Hz, H-16''), 6.91 (br d, 1H, $^3J = 8.0$Hz, H-16'), 7.02 (overlapped, H-16), 7.07 (br, 1H, H-12'), 7.10 (br, 1H, H-12''), 7.14 (br, 1H, H-12); 13C NMR (126 MHz): δ 29.6 (C-4), 30.3 (C-4''), 38.4 (C-4'), 67.2 (C-3''), 68.6 (C-3), 73.3 (C-3'), 79.0 (C-2''), 79.9 (C-2''), 96.8 (C-8, C-6''), 97.6 (C-6'), 98.5 (C-6), 100.3 (C-10''), 100.4 (C-2), 104.4 (C-10), 105.5 (C-8''), 107.3 (C-8'), 107.7 (C-10''), 115.3 (C-12''), 116.0 (C-12), 116.3 (C-12', C-15''), 116.4 (C-15'), 119.2 (C-16''), 119.9 (C-16), 120.7 (C-16'), 131.8 (C-11''), 132.3 (C-11''), 132.7 (C-11), 145.7
(C-13), 146.3 (C-14’), 152.6 (C-9’), 154.1 (C-5), 154.9 (C-7”), 156.6 (C-5’), 157.3 (C-9).

Major rotamer in DMSO (integral 1.0): 1H NMR (500 MHz): δ 2.35 (dd, 1H, $^2J = 16.0$Hz, $^3J = 5.2$Hz, H-4”a), 2.68 (dd, 1H, $^2J = 16.1$Hz, $^3J = 3.9$Hz, H-4”b), 3.76 (br, 1H, H-3’), 3.83 (br, 1H, H-2”), 4.17 (br, 1H, H-3”), 4.27 (br d, 1H, $^3J = 2.0$Hz, H-4), 4.46 (s, 1H, H-4’), 4.93 (s, 1H, H-2”), 5.11 (s, 1H, H-2’), 5.79 (s, 1H, H-6”), 5.86 (d, 1H, $^4J = 2.2$Hz, H-8), 5.89 (d, 1H, $^4J = 2.2$Hz, H-6), 5.93 (s, 1H, H-6”), 6.62 (d, 1H, $^3J = 8.3$Hz, H-15”), 6.68 (br, H-15”), 6.79 (dd, 1H, $^3J = 8.3$Hz, $^4J = 1.6$Hz, H-16”), 6.74 (d, 1H, $^3J = 8.3$Hz, H-15), 6.91 (overlapped, H-16”), 6.92 (br, 1H, H-12”), 7.00 (d, 1H, $^4J = 1.8$Hz, H-12’). **Minor rotamer in DMSO** (integral 0.66): 1H NMR (500 MHz): δ 2.50 (overlapped, H-4”a), 2.61 (br, 1H, H-4”b), 3.42 (overlapped, H-3), 3.68 (br, 1H, H-3”), 3.90 (br, 1H, H-3’), 4.04 (d, 1H, $^3J = 3.3$Hz, H-4), 4.23 (s, 1H, H-2”), 4.27 (overlapped, 1H, H-4”), 5.39 (s, 1H, H-2’), 5.65 (s, 1H, H-6”), 5.77 (d, 1H, $^4J = 2.2$Hz, H-6), 5.82 (d, 1H, $^4J = 2.2$Hz, H-8), 6.05 (s, 1H, H-6”), 6.51 (dd, 1H, $^3J = 8.3$Hz, $^4J = 1.6$Hz, H-16”), 6.67 (overlapped, H-15”), 6.68 (overlapped, H-16, H-12”), 6.72 (br, 1H, H-15’), 6.74 (br, 1H, H-15), 6.95 (d, 1H, $^4J = 1.8$Hz, H-12), 6.98 (dd, 1H, $^3J = 8.2$Hz, $^4J = 1.8$Hz, H-16”), 7.19 (d, 1H, $^4J = 1.8$Hz, H-12’).

Cinnamtannin D1 (2). **Major rotamer in MeOD** (integral 1.0): 1H NMR (500 MHz, T = 270K): δ 2.45 (dd, 1H, $^2J = 16.5$Hz, $^3J = 10.3$Hz, H-4”a), 3.05 (dd, 1H, $^2J = 16.5$Hz, $^3J = 6.2$Hz, H-4”b), 3.46 (d, 1H, $^3J = 3.3$Hz, H-3), 3.67 (br, 1H, H-3’), 3.96 (d, 1H, $^3J = 9.3$Hz, H-2”), 4.00 (d, 1H, $^3J = 3.3$Hz, H-4), 4.06 (br s, 1H, H-3’), 4.53 (s, 1H, H-4”), 5.52 (s, 1H, H-2”), 5.84 (s, 1H, H-6”), 5.94 (d, 1H, $^4J = 1.9$Hz, H-6), 6.00 (d, 1H, $^4J = 1.9$Hz, H-8), 6.10 (s, 1H, H-2”), 6.66 (dd, 1H, $^3J = 8.2$Hz, $^4J = 1.7$Hz, H-16”), 6.75 (d, 1H, $^4J = 1.7$Hz, H-12”) 6.76 (d, 1H, $^3J = 8.3$Hz, H-15”), 6.84 (d, 2H, $^3J = 8.3$ Hz, H-15, H-15’), 6.94 (dd, 1H, $^3J = 8.6$Hz, $^4J = 1.9$Hz, H-16), 7.07 (d, 1H, $^3J = 2.1$Hz, H-12), 7.09 (dd, 1H, $^3J = 8.2$Hz, $^4J = 1.9$Hz, H-16’), 7.23 (d, 1H, $^4J = 1.3$Hz, H-12’); 13C NMR (126 MHz): δ 29.1 (C-4), 30.8 (C-4”), 38.4
(C-4’), 67.3 (C-3), 70.2 (C-3’), 78.8 (C-2’), 83.5 (C-2’’), 96.2 (C-6’), 96.6 (C-6’’),
96.7 (C-8), 98.5 (C-6), 100.2 (C-2), 101.9 (C-10’’), 105.2 (C-10), 106.4 (C-8’), 106.7 (C-10’),
108.8 (C-8’’), 115.9 (C-12, C-15’’), 116.0 (C-12’’), 116.4 (C-15, C-15’’), 116.7 (C-12’), 120.1
(C-16), 120.2 (C-16’), 121.2 (C-16’’), 131.7 (C-11’), 132.6 (C-11), 132.8 (C-11’’), 145.6 (C-
13, C-13’’), 145.9 (C-14’’), 146.0 (C-13’’), 146.4 (C-14’), 146.8 (C-14), 151.2 (C-7’), 151.9
(C-9’), 154.3 (C-5), 155.5 (C-5’’, C-7’, C-9’’), 156.0 (C-5’), 156.8 (C-9), 157.9 (C-7). Minor
rotamer in MeOD (integral 0.24): 1H NMR (500 MHz, T = 270K): δ 2.60 (dd, 1H, 2J =
16.4Hz, 3J = 5.6Hz, H-4’a), 2.66 (dd, 1H, 2J = 16.4Hz, 3J = 4.4Hz, H-4’’b), 4.02 (br s, 1H, H-
3’), 4.08 (d, 1H, 3J = 3.9Hz, H-3), 4.11 (q, 1H, 3J = 5.4Hz, H-3’’), 4.44 (d, 1H, 3J = 3.3Hz, H-
4), 4.70 (s, 1H, H-4’), 4.92 (d, 1H, 3J = 5.5Hz, H-2’’), 5.33 (s, 1H, H-2’), 5.87 (s, 1H, H-6’’),
6.00 (d, 1H, 4J = 2.4Hz, H-6), 6.07 (d, 1H, 4J = 2.4Hz, H-8), 6.09 (s, 1H, H-6’), 6.72 (d, 1H,
3J = 8.0Hz, H-15’’), 6.79 (d, 1H, 3J = 8.0Hz, H-15’), 6.81 (d, 1H, 3J = 8.3Hz, H-15), 6.85
(overlapped, 1H, H-12’’), 6.87 (dd, 1H, 3J = 8.3Hz, 4J = 1.9Hz, H-16’’), 6.96 (dd, 1H, 3J = 8.4Hz,
4J = 1.9Hz, H-16’), 7.04 (dd, 1H, 3J = 8.1Hz, 4J = 2.0Hz, H-16), 7.13 (d, 1H, 3J =
2.0Hz, H-12’), 7.16 (d, 1H, 3J = 2.1Hz, H-12); 13C NMR (126 MHz): δ 26.9 (C-4’’), 29.6 (C-
4), 38.0 (C-4’), 68.5 (C-3’’), 68.6 (C-3), 72.8 (C-3’), 79.2 (C-2’), 82.2 (C-2’’), 96.5 (C-6’),
96.8 (C-8), 97.2 (C-6’’), 98.5 (C-6), 100.4 (C-2), 100.7 (C-10’’), 104.3 (C-10), 105.7 (C-10’),
106.9 (C-8’), 108.3 (C-8’’), 114.7 (C-12’’, C-15’’), 115.8 (C-15), 115.9 (C-12), 116.2 (C-15’),
116.4 (C-12’), 119.5 (C-16’’), 119.9 (C-16), 120.8 (C-16’’), 131.8 (C-11’), 132.8 (C-11), 145.0
(C-14’’), 145.8 (C-13’), 146.2 (C-14’, C-13’’), 146.8 (C-14), 152.6 (C-9’), 153.9 (C-9’’), 156.0
(C-7’’), 157.2 (C-5’). Major rotamer in DMSO (integral 1.0): 1H NMR (500 MHz): δ 2.36 (br,
1H, H-4’a), 2.42 (br, 1H, H-4’’b), 3.77 (br, 1H, H-3’), 3.81 (br d, 1H, 3J = 2.8Hz, H-3), 3.91
(q, 1H, 3J = 5.3Hz, H-3’’), 4.26 (d, 1H, 3J = 3.2Hz, H-4), 4.44 (br s, 1H, H-4’), 4.48 (d, 1H, 3J =
5.3Hz, H-2’’), 4.86 (d, 1H, 3J = 5.3Hz, OH-3’), 5.19 (s, 1H, H-2’), 5.30 (br d, 1H, 3J =
3.2Hz, OH-3), 5.77 (s, 1H, H-6’’), 5.86 (d, 1H, 4J = 2.3Hz, H-8), 5.87 (d, 1H, 4J = 2.3Hz, H-
6), 5.92 (s, 1H, H-6’), 6.62 (d, 1H, \(J = 7.8 \text{Hz}, H-15” \)), 6.70 (d, 1H, \(J = 7.8 \text{Hz}, H-15’ \)), 6.73 (d, 1H, \(J = 2.3 \text{Hz}, H-12’’ \)), 6.74 (d, 1H, \(J = 8.5 \text{Hz}, H-15 \)), 6.78 (dd, 1H, \(J = 8.2 \text{Hz}, J’ = 1.9 \text{Hz}, H-16’’ \)), 6.85 (dd, 1H, \(J = 7.8 \text{Hz}, J’ = 1.9 \text{Hz}, H-16 \)), 6.92 (dd, 1H, \(J = 8.2 \text{Hz}, J’ = 1.9 \text{Hz}, H-16’’ \)), 6.94 (d, 1H, \(J = 1.9 \text{Hz}, H-12’’ \)), 7.00 (d, 1H, \(J = 1.9 \text{Hz}, H-12 \)). Minor rotamer in DMSO (integral 0.42): \(^1\text{H NMR (500 MHz):} \delta 2.24 (dd, 1H, \(J = 16.1 \text{Hz}, J’ = 9.5 \text{Hz}, H-4”a \)), 2.79 (dd, 1H, \(J = 16.1 \text{Hz}, J’ = 5.6 \text{Hz}, H-4”b \)), 3.47 (overlapped, H-3”), 3.49 (d, 1H, \(J = 3.6 \text{Hz}, H-3 \)), 3.80 (overlapped, 1H, H-2”), 3.82 (overlapped, H-4), 3.87 (br, 1H, H-3”), 4.24 (s, 1H, H-4’), 4.81 (d, 1H, \(J = 4.1 \text{Hz}, H-3’ \)), 5.23 (s, 1H, H-2”), 5.66 (s, 1H, H-6”), 5.68 (s, 1H, H-6’), 6.06 (s, 1H, H-6”), 6.44 (dd, 1H, \(J = 8.2 \text{Hz}, J’ = 1.6 \text{Hz}, H-16’’ \)), 6.58 (d, 1H, \(J = 1.6 \text{Hz}, H-12’’ \)), 6.68 (d, 1H, \(J = 8.0 \text{Hz}, H-15” \)), 6.73 (overlapped, H-15’), 6.76 (overlapped, H-16), 6.77 (overlapped, H-15), 6.96 (overlapped, H-16’), 6.98 (d, 1H, \(J = 2.1 \text{Hz}, H-12’ \)), 7.12 (d, 1H, \(J = 1.8 \text{Hz}, H-12’’ \)).

Aesculitannin B (3). Major rotamer in MeOD (integral 1.0): \(^1\text{H NMR (500 MHz, } T = 270\text{K):} \delta 2.76 (br d, 1H, \(J = 17.2 \text{Hz}, H-4”a \)), 2.87 (dd, 1H, \(J = 17.2 \text{Hz}, J’ = 4.8 \text{Hz}, H-4”b \)), 3.26 (d, 1H, \(J = 3.4 \text{Hz}, H-3 \)), 3.94 (d, 1H, \(J = 3.5 \text{Hz}, H-4 \)), 4.06 (br d, 1H, \(J = 4.1 \text{Hz}, H-3” \)), 4.36 (br s, 1H, H-2”), 4.51 (d, 1H, \(J = 8.8 \text{Hz}, H-4’ \)), 4.56 (t, 1H, \(J = 8.7 \text{Hz}, H-3’ \)), 4.61 (d, 1H, \(J = 9.4 \text{Hz}, H-2’ \)), 5.78 (s, 1H, H-6”), 5.83 (d, 1H, \(J = 2.3 \text{Hz}, H-6 \)), 5.98 (d, 1H, \(J = 2.3 \text{Hz}, H-8 \)), 6.06 (s, 1H, H-6’), 6.79 (d, 1H, \(J = 8.1 \text{Hz}, H-15” \)), 6.83 (br, 2H, H-15, H-16), 6.89 (d, 1H, \(J = 8.2 \text{Hz}, H-15’ \)), 6.90 (dd, 1H, \(J = 8.2 \text{Hz}, J’ = 1.7 \text{Hz}, H-16” \)), 6.98 (d, 1H, \(J = 1.7 \text{Hz}, H-12’’ \)), 6.99 (d, 1H, \(J = 2.0 \text{Hz}, H-12’ \)), 7.16 (dd, 1H, \(J = 8.2 \text{Hz}, J’ = 2.0 \text{Hz}, H-16’’ \)), 7.19 (d, 1H, \(J = 2.0 \text{Hz}, H-12’’ \)); \(^1\text{C NMR (126 MHz):} \delta 29.1 (C-4), 30.3 (C-4”), 39.2 (C-4’), 67.2 (C-3), 67.8 (C-3”), 74.1 (C-3’), 79.8 (C-2”), 84.7 (C-2’), 96.6 (C-8, C-6”), 97.3 (C-6’), 98.0 (C-6), 100.3 (C-2), 101.0 (C-10”), 104.2 (C-10), 107.0 (C-8”), 108.8 (C-8”), 109.1 (C-10”), 115.4 (C-12”), 115.8 (C-12, C-15”), 116.1 (C-15), 116.5 (C-15”), 116.7 (C-12’), 119.4 (C-16”), 120.0 (C-16), 121.3 (C-16’), 131.2 (C-11’), 132.4 (C-11), 133.1 (C-11”), 145.4 (C-13), 145.7
(C-14), 146.0 (C-13’), 146.3 (C-13”), 146.8 (C-14’), 146.9 (C-14”), 151.4 (C-7’), 152.4 (C-9’), 154.1 (C-9), 155.4 (C-9”), 155.6 (C-5’), 156.4 (C-5’, C7”), 156.7 (C-5), 158.1 (C-7).

Major rotamer in DMSO (integral 1.0): ¹H NMR (500 MHz): δ 2.61 (br, 1H, H-4”a), 2.71 (br, 1H, H-4”b), 3.85 (br d, 1H, 3J = 3.0Hz, H-3), 4.10 (d, 1H, 3J = 3.1Hz, H-4), 4.29 (br, 1H, H-3’), 4.35 (d, 1H, 3J = 9.6Hz, H-2’), 4.41 (br, 1H, H-4’), 4.82 (s, 1H, H-2”), 5.80 (d, 1H, 4J = 2.4Hz, H-6), 5.84 (d, 1H, 4J = 2.4Hz, H-8), 5.85 (s, 1H, H-6’), 5.86 (s, 1H, H-6”), 6.65 – 6.60 (m, 5H, H-15, H-15’, H-16’, H-15”), H-16”), 6.82 (dd, 1H, 3J = 8.1Hz, 4J = 2.2Hz, H-16), 6.92 (d, 1H, 4J = 1.9Hz, H-12”), 6.93 ((d, 1H, 4J = 1.8Hz, H-12’), 6.97 ((d, 1H, 4J = 2.1Hz, H-12).

Minor rotamer in DMSO (integral 0.8): ¹H NMR (500 MHz): δ 2.81 (overlapped, H-4”a), 2.63 (br, 1H, H-4”b), 3.36 (overlapped, H-3), 3.88 (d, 1H, 3J = 3.2Hz, H-4), 3.92 (br s, 1H, H-3’), 4.17 (br, 1H, H-3”), 4.19 (s, 1H, H-2”), 4.31 (d, 1H, 3J = 9.2Hz, H-4’), 4.43 (br, 1H, H-2’), 5.62 (s, 1H, H-6’), 5.72 (d, 1H, 4J = 2.4Hz, H-6), 5.81 (d, 1H, 4J = 2.4Hz, H-8), 5.97 (s, 1H, H-6”), 6.65 – 6.93 (9H, H-12, H-15, H-16, H-12’, H-15’, H-16’, H-12”, H-15”, H-16”).

Lindetannin (4). Major rotamer in MeOD (integral 1.0): ¹H NMR (500 MHz, T = 270K): δ 2.43 (dd, 1H, 2J = 16.5Hz, 3J = 10.0Hz, H-4”a), 3.03 (dd, 1H, 2J = 16.4Hz, 3J = 6.4Hz, H-4”b), 3.64 (d, 1H, 3J = 3.0Hz, H-3), 3.72 (d, 1H, 3J = 3.0Hz, H-4), 3.77 (br, 1H, H-3”), 3.92 (d, 1H, 3J = 9.1Hz, H-2”), 4.35 (t, 1H, 3J = 9.2Hz, H-3’), 4.45 (d, 1H, 3J = 8.8Hz, H-4’), 4.48 (d, 1H, 3J = 9.7Hz, H-2’), 5.81 (d, 1H, 4J = 2.0Hz, H-6), 5.85 (s, 1H, H-6’), 6.00 (d, 1H, 4J = 1.9Hz, H-8), 6.06 (s, 1H, H-6”), 6.77 (dd, 1H, 3J = 7.9Hz, 4J = 1.5Hz, H-16”), 6.84 (d, 2H, 3J = 7.2Hz, H-15, H-15”), 6.90 (d, 1H, 3J = 8.2Hz, H-15’), 6.93 (d, 1H, 4J = 1.5Hz, H-12”), 6.97 (br, 1H, H-16), 6.98 (br, 1H, H-16’), 7.06 (d, 1H, 4J = 1.7Hz, H-12’), 7.10 (d, 1H, 4J = 1.9Hz, H-12); ¹³C NMR (126 MHz): δ 29.0 (C-4), 31.0 (C-4”), 39.0 (C-4’), 67.4 (C-3), 69.8 (C-3”), 74.5 (C-3’), 83.0 (C-2”), 84.5 (C-2’), 96.5 (C-6”), 96.6 (C-8), 97.3 (C-6’), 98.0 (C-6), 100.4 (C-2), 102.5 (C-10”), 104.2 (C-10), 106.8 (C-8’), 108.9 (C-8”), 109.1 (C-10’), 115.8 (C-12”), 115.9 (C-12), 116.0 (C-15”), 116.3 (C-15), 116.6 (C-12’), 120.1 (C-16), 120.9 (C-16’,
C-16”), 131.4 (C-11’), 132.5 (C-11), 132.6 (C-11”), 145.8 (C-13), 146.1 (C-14, C-13’, C-13”), 146.7 (C-14”), 146.9 (C-14”), 151.3 (C-7’), 152.5 (C-9’), 154.2 (C-9), 155.1 (C-7”), 155.5 (C-9”), 155.7 (C-5”), 156.4 (C-5’), 156.6 (C-5), 158.1 (C-7).

Major rotamer in DMSO (integral 1.0): ¹H NMR (500 MHz): δ 2.36 (br, 1H, H-4”a), 2.82 (br, 1H, H-4”b), 3.55 (br, 1H, H-3”), 3.83 (br t, 1H, ³J = 3.7Hz, H-3), 4.07 (d, 1H, ³J = 3.7Hz, H-4), 4.20 (br, 1H, H-3’), 4.26 (d, 1H, ³J = 8.5Hz, H-4’), 4.31 (d, 1H, ³J = 9.4Hz, H-2’), 4.40 (d, 1H, ³J = 8.8Hz, H-2”), 5.78 (d, 1H, ⁴J = 2.3Hz, H-6), 5.82 (s, 2H, H-6’, H6”), 5.83 (d, 1H, ⁴J = 2.3Hz, H-8), 6.66 (d, 1H, ³J = 8.2Hz, H-15”), 6.71 (br, H-15’), 6.73 (br, H-12”), 6.78 (br, H-15, H-16”), 6.81 (br, H-16’), 6.82 (br, H-16), 6.91 (d, 1H, ⁴J = 1.7Hz, H-12’), 6.97 (br, 1H, H-12).

Minor rotamer in DMSO (integral 0.6): ¹H NMR (500 MHz): δ 2.24 (dd, 1H, ²J = 16.5Hz, ³J = 10.3Hz, H-4”a), 2.82 (br, 1H, H-4”b), 3.57 (br, 1H, H-3”), 3.60 (d, 1H, ³J = 3.7Hz, H-4), 3.63 (d, 1H, ³J = 3.6Hz, H-3), 3.75 (d, 1H, ³J = 9.6Hz, H-2”), 3.98 (overlapped, H-3’), 4.23 (d, 1H, ³J = 5.9Hz, H-4’), 4.26 (overlapped, H-2’), 5.66 (s, 1H, H-6’), 5.68 (d, 1H, ⁴J = 2.3Hz, H-6), 5.82 (overlapped, H-8), 5.97 (s, 1H, H-6”), 6.54 (dd, 1H, ³J = 8.1Hz, ⁴J = 1.6Hz, H-16”), 6.70 (overlapped, H-15, H-15”), 6.73 (overlapped, H-12), 6.75 (d, 1H, ⁴J = 1.7Hz, H-12”), 6.78 (overlapped, H-16’), 6.81 (overlapped, H-16), 6.83 (overlapped, H-15’), 6.97 (overlapped, H-12’).
ΔG298 calculations procedure from the 1H temperature NMR spectra

For 1-4 the ΔG values were calculated using the Eyring’s equation:

\[
ΔG_{Tc} = 4.587 \epsilon \times (10.32 + \log \frac{T_c}{k_c})
\]

where \(T_c\) is the coalescence temperature and \(k_c\) is the rate constant at the coalescence temperature.

In order to calculate \(k_c\) from the NMR spectra, one has to measure the separation between the NMR signals (in Hz) at temperature far away from the coalescence temperature (Δν):

\[
k_c = \frac{\pi \times Δν}{\sqrt{2}}
\]

Here, Δν values were measured for 230K.

Coalescence temperature is different for different signals and depends on the signal separation and the differences in the chemical environment of the given nucleus in both rotamers. In many cases the coalescence temperature exceeded the boiling point of the solvent (methanol). Then, it is possible to estimate \(T_c\) from linear approximation: one has to measure signals separation values in Hz (Δν) for different temperatures and find \(T\) at which Δν=0 (coalescence temperature).

The differences in the coalescence temperatures for different signals in the same compound result in the different Gibbs free energies. In order to calculate ΔG at 298K one can take the obtained ΔG values and plot them against temperatures for which they were calculated. Then, again from linear approximation, ΔG298 can be calculated. The Δν, \(T_c\), \(k_c\), and ΔGTc values obtained in the present paper are available upon request.

The applied ΔG298 calculation method implies the usage of linear approximation twice and therefore, despite very good linear correlations, the obtained results are encumbered with error and, as such, are only estimated values.