Indole-Based Novel Small Molecules for the Modulation of Bacterial Signalling Pathways

Nripendra Nath Biswasa, Samuel K. Kuttya, Nicolas Barraud, George M. Iskander, Renate Griffithc, Scott A. Ricebd, Mark Willcox, David StC Blacka and Naresh Kumara*

Supporting Information

1) Growth Inhibition Data
2) 1H and 13C NMR Spectrums of Synthesised Compounds
1) Growth Inhibition Data

Table 1: Percentage growth inhibition of the indole based AHLs as determined by reduction in OD$_{600}$ in the P$_{lasB}$::gfp reporter strain

<table>
<thead>
<tr>
<th>Compound</th>
<th>Concentration (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>250</td>
</tr>
<tr>
<td>11a</td>
<td>6.19 ± 3.21</td>
</tr>
<tr>
<td>11b</td>
<td>7.50 ± 5.32</td>
</tr>
<tr>
<td>11c</td>
<td>7.28 ± 3.41</td>
</tr>
<tr>
<td>11d</td>
<td>14.99 ± 4.89</td>
</tr>
<tr>
<td>11e</td>
<td>0</td>
</tr>
<tr>
<td>14a</td>
<td>0</td>
</tr>
<tr>
<td>14b</td>
<td>0</td>
</tr>
<tr>
<td>14c</td>
<td>0</td>
</tr>
<tr>
<td>16a</td>
<td>6.96 ± 3.89</td>
</tr>
<tr>
<td>16b</td>
<td>0</td>
</tr>
<tr>
<td>16c</td>
<td>0</td>
</tr>
<tr>
<td>16d</td>
<td>0</td>
</tr>
<tr>
<td>16e</td>
<td>0</td>
</tr>
<tr>
<td>17a</td>
<td>0</td>
</tr>
<tr>
<td>17b</td>
<td>0</td>
</tr>
<tr>
<td>17c</td>
<td>5.92 ± 1.88</td>
</tr>
<tr>
<td>20a</td>
<td>0</td>
</tr>
<tr>
<td>20b</td>
<td>7.38 ± 2.12</td>
</tr>
<tr>
<td>20c</td>
<td>0</td>
</tr>
<tr>
<td>21a</td>
<td>0</td>
</tr>
<tr>
<td>21b</td>
<td>0</td>
</tr>
<tr>
<td>21c</td>
<td>0</td>
</tr>
<tr>
<td>Furanone 30</td>
<td>31.57 ± 3.87</td>
</tr>
</tbody>
</table>

Growth inhibition ± standard deviation of mean from at least two independent experiments. Compounds tested twice in duplicate. 0 = No growth inhibition
1) 1H and 13C NMR Spectrums of Synthesised Compounds

1H NMR spectrum of Compound # 9

13C NMR spectrum of Compound # 9
1H NMR spectrum of Compound # 10

![1H NMR spectrum](image1)

13C NMR spectrum of Compound # 10

![13C NMR spectrum](image2)
1H NMR spectrum of Compound # 11a

13C NMR spectrum of Compound # 11a
1H NMR spectrum of Compound # 11b

13C NMR spectrum of Compound # 11b
1H NMR spectrum of Compound # 11c

13C NMR spectrum of Compound # 11c
1H NMR spectrum of Compound # 11d

13C NMR spectrum of Compound # 11d
1H NMR spectrum of Compound # 11e

13C NMR spectrum of Compound # 11e
1H NMR spectrum of Compound # 14a

13C NMR spectrum of Compound # 14a
1H NMR spectrum of Compound # 14b

13C NMR spectrum of Compound # 14b
H NMR spectrum of Compound # 14c

\[\text{structure image} \]

13C NMR spectrum of Compound # 14c

\[\text{structure image} \]
1H NMR spectrum of Compound # 16a

13C NMR spectrum of Compound # 16a
1H NMR spectrum of Compound # 16c

13C NMR spectrum of Compound # 16c
1H NMR spectrum of Compound # 16d

13C NMR spectrum of Compound # 16d
\(^1\)H NMR spectrum of Compound \# 16e

\(^{13}\)C NMR spectrum of Compound \# 16e
1H NMR spectrum of Compound # 17a

13C NMR spectrum of Compound # 17a
\(^1\)H NMR spectrum of Compound \# 17b

\(^1\)C NMR spectrum of Compound \# 17b
1H NMR spectrum of Compound # 17c

![H NMR spectrum of Compound # 17c](image)

13C NMR spectrum of Compound # 17c

![13C NMR spectrum of Compound # 17c](image)
\(^1\)H NMR spectrum of Compound \# 19

\(^13\)C NMR spectrum of Compound \# 19
\(^1\)H NMR spectrum of Compound \# 20a

\(^13\)C NMR spectrum of Compound \# 20a
1H NMR spectrum of Compound # 20b

13C NMR spectrum of Compound # 20b
1H NMR spectrum of Compound # 20c

\[\text{Diagram of H NMR spectrum} \]

13C NMR spectrum of Compound # 20c

\[\text{Diagram of C NMR spectrum} \]
1H NMR spectrum of Compound #21a

13C NMR spectrum of Compound #21a
1H NMR spectrum of Compound # 21b

13C NMR spectrum of Compound # 21b
1H NMR spectrum of Compound # 21c

13C NMR spectrum of Compound # 21c