Supporting Information

Water-Soluble Aryl-Extended Calix[4]pyrroles with Unperturbed Aromatic Cavities: Synthesis and Binding Studies

D. Hernández-Alonso,a S. Zankowskia, L. Adriaenssensa and P. Ballesterab,*

aInstitute of Chemical Research of Catalonia (ICIQ), ICIQ, Avgda. Països Catalans 16, 43007 Tarragona, Spain.

bCatalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys, 23, 08010 Barcelona, Spain

pballester@iciq.es
Table of contents

1H and 13C{1H} -NMR spectra of compounds..S3

HRMS spectra ...S8

Figure S1 1H-NMR spectra of calix[4]pyrrole 2 with incremental amounts of PNO 13S10

Figure S2 ROESY 1H NMR experiment of complex 13\subset2 in presence of 2.6 eq of PNO 13S11

ITC titrations in aqueous media ..S11
1H and 13C(1H)-NMR spectra of compounds. All the NMR spectra were measured at 25°C

1H NMR (500 MHz, CDCl$_3$) spectrum of compound 8

1H NMR (300 MHz, CDCl$_3$) spectrum of compound 4
1H NMR (300 MHz, CDCl$_3$) and 13C NMR (1H) DEPTQ 135 (125 MHz, CDCl$_3$) spectra of compound 3
1H NMR (500 MHz, CDCl$_3$) spectrum of compound 10

1H NMR (400 MHz, D$_2$O), 13C NMR {1H} (125 MHz with cryoprobe, D$_2$O), 13C NMR {1H} DEPTQ 135 (125 MHz with cryoprobe, D$_2$O) and 13C NMR {1H} HSQC (125 MHz with cryoprobe, D$_2$O) spectra of compound 2. (PD = 7.2 adjusted with NaOD solution in D$_2$O)
HRMS spectra

HRMS (ESI-TOF) m/z: [M + Na]^+ spectrum of compound 3. Top measured, bottom calculated.
HRMS (MALDI-TOF) spectrum of compound 2 [M + Na]$^+$ (top measured, bottom calculated)
1HNMR titration of receptor 2 with PNO13 and ROESY 1HNMR of the complex in presence of an excess of PNO13.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{FigureS1}
\caption{Selected downfield regions of the 1H-NMR spectra (400 MHz, D$_2$O adjusted to pD=7.2 with NaOD, 273 K) obtained during the titration of calix[4]pyrrole 2 (1 mM) with incremental amounts of PNO 13. See figure 3 in the manuscript for proton numbering. Prime letters and numbers represent proton signals corresponding to encapsulation complex PNO13<2.}
\end{figure}
Figure S2: Selected region of ROESY 1H NMR experiment of complex 13\subset2 in presence of 2.6 eq of PNO 13. Prime letters represent proton signals corresponding to PNO 13 in complex 13\subset2. See figure 3 in the manuscript for proton lettering.

ITC Experiments

Titrations were carried out on a Microcal VP-ITC microcalorimeter, at 298 K, in water adjusting the pH by addition of NaOH(aq) solution until pH≈ 11 and then adjusting with HCl(aq) solution until pH≈7.2. The association constants between receptor 2 and pyridine N-oxide 11, 12 and 13 were determined by monitoring the heat released by the system as incremental amounts of the N-oxide 11, 12 or 13 were added. The values of the association constant K_a and the enthalpy of binding ΔH were calculated using the Origin 7 software package which uses least-squares minimization to obtain globally optimized parameters as described in Wiseman et al.1 In all cases the data fit well to a simple 1:1 binding model.

Specifically, the association constants were determined using solution of 2 in water at 296 K, and adding aliquots of a solution of pyridine N-oxide derivatives, approximately 10 times more concentrated, also in the same media. The association constant (K_a), TΔS and ΔH values for the binding process were determined by averaging the values from the titrations.
Figure S3: Top: Raw data for the ITC titration in water of PNO derivatives into receptor 2. Bottom: Binding isotherm of calorimetric titration data shown on top. a) PNO11 over [2] = 0.62mM in H2O; pH = 7.22. b) PNO 12 over [2] = 0.17mM in H2O; pH = 7.21. c) PNO 13 over [2] = 0.63mM in H2O; pH = 7.23. c) = 7.43.