Ruthenium-Catalyzed Direct C3 Alkylation of Indoles with α,β-Unsaturated Ketones

Shuai-Shuai Li, a,b,c Hui Lin, c Xiao-Mei Zhang, a and Lin Dong* c

a S.-S. Li, Prof. Dr. X.-M. Zhang
 Key Laboratory for Asymmetric Synthesis and Chiraltechnology of Sichuan Province,
 Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
b S.-S. Li
 Graduate School of the Chinese Academy of Sciences,
 Beijing 100049, China
c S.-S. Li, H. Lin, Prof. Dr. L. Dong
 Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy,
 Sichuan University, Chengdu 610041, China
 E-mail: dongl@scu.edu.cn

Supporting Information

Table of Contents

1. General Methods
2. General procedure for synthesis of 3-alkyl indole and Characterization Data
3. Synthetic Applications, Structure Determination and Characterization Data
4. Mechanism Study
5. NMR Spectra of 3-alkyl indole
1. General Methods

NMR data were obtained for 1H at 300 MHz or 400 MHz, and for 13C at 75 MHz or 100 MHz. Chemical shifts were reported in ppm from tetramethylsilane with the solvent resonance as the internal standard in CDCl$_3$ or DMSO-d$_6$ solution. ESI HRMS was recorded on a Waters SYNAPT G2 and Water XEVO G2 Q-ToF. UV detection was monitored at 220 nm. TLC was performed on glass-backed silica plates. Column chromatography was performed on silica gel (200-300 mesh), eluting with ethyl acetate and petroleum ether. CH$_2$Cl$_2$, CHCl$_3$CHCl$_2$ were distilled over CaH$_2$. All indoles were commercially available and N-methyl indoles were prepared according to the literature procedures.$[^1]$ All α,β-unsaturated ketones were prepared according to the literature procedures.$[^2]$

2. General Procedure for Synthesis of 3-alkyl indole derivatives and Characterization Data

N-CH$_3$ indole 1a (6.6 mg, 0.05 mmol), chalcone 2a (12.1 mg, 0.058 mmol), RuCl$_2$(PPh$_3$)$_3$ (1.4 mg, 3 mol %) and AgSbF$_6$ (3.44 mg, 20 mol %) were stirred in DCM (1.0 mL) at room temperature for 4 h. After completion, the reaction mixture was purified by flash chromatography eluting with ethyl acetate and petroleum ether (1:50) to give the product 3aa as a white solid (16.3 mg, 96%).

$3\text{-}(1\text{-methyl-1}$H-indol-3-yl)-1,3-diphenylpropan-1-one (3aa). 4 h, 96% yield; 1H NMR (400 MHz, CDCl$_3$): δ 7.96 (d, $J = 7.6$ Hz, 2H), 7.58-7.54 (m, 1H), 7.49-7.43 (m, 3H), 7.40-7.39 (m, 2H), 7.31-7.27 (m, 3H), 7.23-7.17 (m, 2H), 7.06-7.03 (m, 1H), 6.87 (s, 1H), 5.10 (t, $J = 7.2$ Hz, 1H), 3.81 (ddd, $J = 6.4$, 20.4, 24.4 Hz, 2H), 3.73 (s, 3H) ppm; 13C NMR (100 MHz, CDCl$_3$): δ 198.4, 144.4, 137.3, 137.1, 132.9, 128.5, 128.4, 128.0, 127.8, 126.9, 126.2, 121.6, 119.5, 118.8, 117.7, 109.2, 45.3, 38.0, 32.6 ppm. ESI HRMS: calcd. for C$_{24}$H$_{21}$NO+Na 362.1521, found 362.1515.

3-(2-Chloro-phenyl)-3-(1-methyl-11H-indol-3-yl)-1-phenyl-propan-1-one (3ab). 8 h, 91% yield; 1H NMR (400 MHz, CDCl$_3$): δ 7.97 (d, $J = 7.6$ Hz, 2H), 7.55-7.52 (m, 1H), 7.44-7.41 (m, 3H), 7.39-7.37 (m, 1H), 7.25-7.23 (m, 2H), 7.18-7.15 (m, 1H), 7.11-7.09 (m, 2H), 7.02-6.98 (m, 1H), 6.85 (s, 1H), 5.53 (t, $J = 7.2$ Hz, 1H), 3.73 (ddd, $J = 8.4$, 20.8, 44.4 Hz, 2H), 3.70 (s, 3H) ppm; 13C NMR (100 MHz, CDCl$_3$): δ 198.0, 141.7, 137.2, 136.8, 133.5, 133.0, 129.7, 128.9, 128.6, 128.1, 127.5, 127.0, 126.9, 126.6, 121.7, 119.5, 118.9, 116.1, 109.2, 44.3, 34.7, 32.7 ppm. ESI HRMS: calcd. for C$_{23}$H$_{20}$ClNO+Na 396.1131 found C$_{23}$H$_{20}$ClNNaO 396.1133, C$_{23}$H$_{20}$ClNNaO 398.1105.

3-[1-(3-Chloro-phenyl)-3-phenyl-but-3-enyl]-1-methyl-11H-indole (3ac). 10 h, 80% yield; 1H NMR (400 MHz, CDCl$_3$): δ 7.96 (d, $J = 7.6$ Hz, 2H), 7.58-7.54 (m, 1H), 7.47-7.44 (m, 3H), 7.36 (s, 1H), 7.29-7.25 (m, 2H), 7.24-7.14 (m, 3H), 7.07-7.04 (m, 1H), 6.87 (s, 1H),
5.07 (t, J = 7.2 Hz, 1H), 3.78 (ddd, J = 6.8, 20, 33.6 Hz, 2H), 3.73 (s, 3H) ppm; 13C NMR (100 MHz, CDCl3): δ 197.9, 146.6, 137.3, 136.9, 134.1, 133.1, 129.6, 128.6, 128.0, 127.9, 126.7, 126.4, 126.1, 121.8, 119.3, 118.9, 117.0, 109.2, 44.9, 37.7, 32.7 ppm. ESI HRMS: calcd. for C24H20ClNO+Na 396.1131 found C24H2035ClNNaO 396.1142, C24H2037ClNNaO 398.1096.

3-(4-Chloro-phenyl)-3-(1-methyl-1H-indol-3-yl)-1-phenyl-propan-1-one (3ad). 8 h, 95% yield; 1H NMR (400 MHz, CDCl3): δ 7.92 (d, J = 7.2 Hz, 2H), 7.56-7.52 (m, 1H), 7.45-7.39 (m, 3H), 7.29-7.24 (m, 3H), 7.21-7.17 (m, 3H), 7.04-7.00 (m, 1H), 5.03 (t, J = 7.2 Hz, 1H), 3.74 (ddd, J = 6.4, 20, 29.6 Hz, 2H), 3.73 (s, 3H) ppm; 13C NMR (100 MHz, CDCl3): δ 198.2, 142.9, 137.3, 136.9, 133.1, 131.8, 129.1, 128.6, 128.5, 128.0, 126.7, 126.1, 121.8, 119.1, 119.0, 109.3, 45.0, 37.4, 32.7 ppm. ESI HRMS: calcd. for C24H20ClNO+Na 396.1131 found C24H2079BrNNaO 396.1140, C24H2081BrNNaO 398.1090.

3-(4-Methoxy-phenyl)-3-(1-methyl-1H-indol-3-yl)-1-phenyl-propan-1-one (3af). 10 h, 95% yield; 1H NMR (400 MHz, CDCl3): δ 7.92 (d, J = 7.6 Hz, 2H), 7.53-7.50 (m, 1H), 7.44-7.39 (m, 3H), 7.27-7.23 (m, 3H), 7.18-7.15 (m, 1H), 7.02-6.98 (m, 1H), 6.81-6.77 (m, 3H), 5.00 (t, J = 7.2 Hz, 1H), 3.75 (ddd, J = 10.8, 22.2, 31.8 Hz, 2H), 3.73 (s, 3H) ppm; 13C NMR (100 MHz, CDCl3): δ 198.6, 157.8, 137.3, 137.0, 136.4, 132.9, 132.9, 131.4, 129.6, 128.6, 128.0, 126.7, 126.1, 121.8, 119.4, 118.9, 117.2, 109.3, 44.9, 37.4, 32.7 ppm. ESI HRMS: calcd. for C25H23NO2+Na 392.1626, found 392.1627.

3-(1-Methyl-1H-indol-3-yl)-1-phenyl-3-(4-trifluoromethyl-phenyl)-propan-1-one (3ag). 12 h, 98% yield; 1H NMR (400 MHz, CDCl3): δ 7.93 (d, J = 7.6 Hz, 2H), 7.56-7.40 (m, 8H), 7.28-7.26 (m, 1H), 7.23-7.18 (m, 1H), 7.05-7.01 (m, 1H), 6.84 (s, 1H), 5.12 (t, J = 7.2 Hz, 1H), 3.79 (ddd, J = 6.4, 20.4, 26 Hz, 2H), 3.72 (s, 3H) ppm; 13C NMR (100 MHz, CDCl3): δ 198.0, 148.5, 137.3, 136.8, 133.2, 128.6, 128.1, 128.0, 126.7, 126.2, 125.4, 125.3, 125.3, 121.2, 119.3,
119.0, 116.9, 109.3, 44.8, 37.8, 32.7 ppm. ESI HRMS: calcd. for C_{23}H_{20}F_{3}NO+Na 430.1395, found 430.1401.

3-(1-Methyl-1H-indol-3-yl)-3-naphthalen-1-yl-1-phenyl-propan-1-one (3ah). 10 h, 77% yield; \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 8.30 (d, \(J = 8.8\) Hz, 1H), 7.94 (d, \(J = 7.6\) Hz, 2H), 7.85-7.35 (m, 1H), 7.70 (d, \(J = 8.0\) Hz, 1H), 7.54-7.38 (m, 8H), 7.35-7.31 (m, 1H), 7.24-7.21 (m, 1H), 7.19-7.15 (m, 1H), 6.99 (t, \(J = 7.2\) Hz, 1H), 5.94 (t, \(J = 6.8\) Hz, 1H), 3.88 (ddd, \(J = 7.6, 21.4, 61.8\) Hz, 2H), 3.62 (s, 3H) ppm; \(^13\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 198.3, 140.0, 137.3, 137.0, 134.0, 133.0, 131.4, 128.8, 128.5, 128.0, 127.0, 126.9, 126.1, 125.4, 125.3, 124.2, 123.6, 121.6, 119.5, 118.8, 117.5, 109.2, 44.9, 33.0, 32.6 ppm. ESI HRMS: calcd. for C_{28}H_{23}NO+Na 412.1677, found 412.1675.

3-(1-Methyl-1H-indol-3-yl)-1-phenyl-3-thiophen-2-yl-propan-1-one (3ai). 18 h, 60% yield; \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 7.96 (d, \(J = 7.6\) Hz, 2H), 7.59-7.54 (m, 2H), 7.47-7.43 (m, 2H), 7.31-7.21 (m, 2H), 7.12-7.07 (m, 2H), 6.96-6.95 (m, 2H), 6.91-6.89 (m, 1H), 5.39 (t, \(J = 7.2\) Hz, 1H), 3.86 (ddd, \(J = 7.6, 17.6, 21.2\) Hz, 2H), 3.73 (s, 3H) ppm; \(^13\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 197.9, 148.9, 137.2, 136.9, 133.0, 128.5, 128.0, 126.5, 126.3, 124.1, 123.3, 121.7, 119.5, 118.9, 117.4, 109.3, 46.2, 33.3, 32.7 ppm. ESI HRMS: calcd. for C_{22}H_{19}NOS+Na 368.1085, found 368.1093.

3-(1-Methyl-1H-indol-3-yl)-1-phenyl-butan-1-one (3aj). 10 h, 60% yield; \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 7.95 (d, \(J = 7.2\) Hz, 2H), 7.67-7.65 (m, 1H), 7.55-7.51 (m, 1H), 7.45-7.41 (m, 2H), 7.29-7.27 (m, 1H), 7.24-7.20 (m, 1H), 7.12-7.08 (m, 1H), 6.88 (s, 1H), 3.81 (m, 1H), 3.73 (s, 3H), 3.34 (ddd, \(J = 5.2, 18.8, 89.4\) Hz, 2H), 1.43 (d, \(J = 6.8\) Hz, 3H) ppm; \(^13\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 199.7, 137.3, 137.2, 132.9, 128.5, 128.1, 126.6, 125.0, 121.5, 120.0, 119.3, 118.6, 109.3, 46.6, 32.6, 29.7, 27.0, 21.1 ppm. ESI HRMS: calcd. for C_{19}H_{19}NO+Na 300.1364, found 300.1366.

3-(1-Methyl-1H-indol-3-yl)-1-naphthalen-2-yl-3-phenyl-propan-1-one (3ak). 12 h, 96% yield; \(^1\)H NMR (400 MHz, DMSO): \(\delta\) 8.79 (s, 1H), 8.13 (d, \(J = 7.6\) Hz, 1H), 7.97-7.95 (m, 3H), 7.68-7.60 (m, 2H), 7.49-7.43 (m, 3H), 7.35-7.33 (m, 2H), 7.25-7.21 (m, 2H), 7.11-7.08 (m, 2H), 6.96-6.92 (m, 1H), 4.94 (t, \(J = 7.2\) Hz, 1H), 4.01 (ddd, \(J = 7.2, 20.8, 32.8\) Hz, 2H), 3.71 (s, 3H) ppm; \(^13\)C NMR (100 MHz, DMSO): \(\delta\) 198.3, 145.4, 136.9, 135.2, 134.3, 132.4, 130.3, 129.8, 128.8, 128.4, 128.3, 128.0, 127.8, 127.1, 126.9, 126.5, 126.1, 123.8, 121.4, 119.2, 118.6, 117.7,
109.8, 44.5, 37.7, 32.5 ppm. ESI HRMS: calcd. for C_{28}H_{23}NO Na 412.1677, found 412.1667.

1-Furan-2-yl-3-(1-methyl-1H-indol-3-yl)-3-phenyl-propan-1-one (3al). 10 h, 96% yield; \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 7.52 (s, 1H), 7.45-7.43 (m, 1H), 7.36-7.34 (m, 2H), 7.26-7.23 (m, 3H), 7.18-7.12 (m, 2H), 7.11-7.10 (m, 1H), 7.02-6.98 (m, 1H), 6.87 (s, 1H), 6.46-6.45 (m, 1H), 5.03 (t, \(J = 7.6\) Hz, 1H), 3.70 (s, 3H), 3.63 (ddd, \(J = 7.6, 19.6, 28.4\) Hz, 2H) ppm; \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 187.6, 152.9, 146.2, 144.1, 137.2, 128.3, 127.8, 126.9, 126.2, 121.6, 119.6, 118.8, 117.4, 117.0, 112.2, 109.1, 45.0, 38.1, 32.6 ppm. ESI HRMS: calcd. for C\(_{22}\)H\(_{19}\)NO\(_2\)Na 352.1313, found 352.1307.

4-(1-Methyl-1H-indol-3-yl)-4-phenyl-butan-2-one (3am). 8 h, 55% yield; \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 7.48-7.46 (m, 1H), 7.36-7.34 (m, 2H), 7.32-7.26 (m, 3H), 7.23-7.18 (m, 2H), 7.07-7.03 (m, 1H), 6.86 (s, 1H), 4.86 (t, \(J = 7.6\) Hz, 1H), 3.74 (s, 3H), 3.23 (ddd, \(J = 7.2, 19.6, 32\) Hz, 2H), 2.10 (s, 3H) ppm; \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 207.6, 144.1, 137.2, 128.4, 127.6, 126.8, 126.3, 126.1, 121.7, 119.4, 118.8, 117.2, 109.2, 50.4, 38.3, 32.6, 30.3 ppm. ESI HRMS: calcd. for C\(_{19}\)H\(_{19}\)NO Na 300.1364, found 300.1360.

5-(1-Methyl-1H-indol-3-yl)-1,5-diphenyl-pent-1-en-3-one (3an). 8 h, 70% yield; \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 7.56 (s, 1H), 7.52-7.48 (m, 3H), 7.42-7.40 (m, 5H), 7.33-7.28 (m, 3H), 7.26-7.19 (m, 2H), 7.09-7.05 (m, 1H), 6.91 (s, 1H), 6.76-6.72 (m, 1H), 5.02 (t, \(J = 7.2\) Hz, 1H), 3.74 (s, 3H), 3.50 (ddd, \(J = 6.8, 19.2, 37.2\) Hz, 2H) ppm; \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 198.6, 144.2, 142.6, 137.2, 134.4, 130.4, 128.8, 128.4, 128.2, 127.7, 126.9, 126.2, 126.1, 121.6, 119.6, 118.8, 117.5, 109.2, 47.5, 38.4, 32.6 ppm. ESI HRMS: calcd. for C\(_{26}\)H\(_{23}\)NO Na 388.1677, found 388.1676.

2-(1-Methyl-1H-indol-3-yl)-1,4-diphenyl-butane-1,4-dione (3ao). 6 h, 98% yield; \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 8.07-8.05 (m, 2H), 7.98-7.96 (m, 2H), 7.78-7.76 (m, 1H), 7.54-7.50 (m, 1H), 7.46-7.39 (m, 3H), 7.37-7.33 (m, 2H), 7.28-7.22 (m, 2H), 7.18-7.15 (m, 1H), 6.88 (s, 1H), 5.59 (dd, \(J = 3.6, 10.4\) Hz, 1H), 4.24 (dd, \(J = 10.4, 18.4\) Hz, 1H), 3.42 (dd, \(J = 3.2, 18\) Hz, 1H), 3.66 (s, 3H) ppm; \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 199.1, 198.6, 137.1, 136.5, 136.4, 133.1, 132.6, 128.7, 128.5, 128.4, 128.1, 127.4, 126.4, 122.0, 119.5, 118.7, 111.4, 109.5, 43.1, 39.4, 32.7 ppm. ESI HRMS: calcd. for C\(_{25}\)H\(_{21}\)NO\(_2\) Na 390.1470, found 390.1465.
1-(1-Methyl-1H-indol-3-yl)-pentan-3-one (3ap). 8 h, 75% yield; 1H NMR (400 MHz, CDCl$_3$): δ 7.57 (d, $J = 8.0$ Hz, 1H), 7.28-7.19 (m, 2H), 7.12-7.08 (m, 1H), 6.82 (s, 1H), 3.70 (s, 3H), 3.03 (t, $J = 7.6$ Hz, 2H), 2.79 (t, $J = 7.6$ Hz, 2H), 2.39 (q, $J = 7.2$ Hz, 2H), 1.03 (t, $J = 7.2$ Hz, 3H) ppm; 13C NMR (100 MHz, CDCl$_3$): δ 211.3, 136.9, 127.5, 126.3, 121.5, 118.7, 118.6, 113.7, 109.1, 42.9, 35.9, 32.5, 19.2, 7.7 ppm. ESI HRMS: calcd. for C$_{14}$H$_{17}$NO+Na 238.1208, found 238.1210.

4-(1-Methyl-1H-indol-3-yl)-pentan-2-one (3aq). 8 h, 71% yield; 1H NMR (400 MHz, CDCl$_3$): δ 7.64-7.62 (m, 1H), 7.29-7.27 (m, 1H), 7.24-7.20 (m, 1H), 7.12-7.09 (m, 1H), 6.82 (s, 1H), 3.72 (s, 3H), 3.65-3.60 (m, 1H), 2.81 (ddd, $J = 6.0, 19, 86.6$ Hz, 2H), 2.09 (s, 3H), 1.37 (d, $J = 6.8$ Hz, 3H) ppm; 13C NMR (100 MHz, CDCl$_3$): δ 208.6, 137.1, 126.5, 124.9, 121.5, 119.4, 119.1, 118.6, 109.3, 51.6, 32.5, 30.3, 26.9, 21.4 ppm. ESI HRMS: calcd. for C$_{14}$H$_{17}$NO+Na 238.1208, found 238.1205.

4-Methyl-3-(1-methyl-1H-indol-3-yl)-phenol (3ar). 12 h, 42% yield; 1H NMR (400 MHz, CDCl$_3$): δ 7.69 (d, $J = 8.0$ Hz, 1H), 7.52-7.50 (m, 1H), 7.43-7.38 (m, 1H), 7.32-7.26 (m, 2H), 7.16 (s, 1H), 7.05-7.04 (m, 1H), 6.89-6.86 (m, 1H), 5.23 (s, 1H), 3.93 (s, 3H), 2.20 (s, 3H) ppm; 13C NMR (100 MHz, CDCl$_3$): δ 153.3, 136.6, 135.6, 131.3, 128.6, 127.6, 127.3, 121.7, 120.2, 119.4, 117.4, 115.6, 113.4, 109.3, 32.8, 19.8 ppm. ESI HRMS: calcd. for C$_{16}$H$_{15}$NO+Na 260.1051, found 260.1048.

3-(1H-Indol-3-yl)-cyclohexanone (3as). 4 h, 33% yield; 1H NMR (400 MHz, CDCl$_3$): δ 7.63 (d, $J = 7.6$ Hz, 1H), 7.32-7.30 (m, 1H), 7.27-7.23 (m, 1H), 7.14-7.11 (m, 1H), 6.84 (s, 1H), 3.76 (s, 3H), 3.49-3.44 (m, 1H), 2.82-2.81 (m, 1H), 2.66-2.60 (m, 1H), 2.50-2.37 (m, 2H), 2.27-2.24 (m, 1H), 2.09-2.02 (m, 1H), 1.99-1.93 (m, 1H), 1.88-1.82 (m, 1H) ppm; 13C NMR (100 MHz, CDCl$_3$): δ 211.8, 170.6, 137.0, 126.4, 125.2, 121.7, 119.0, 118.0, 118.1, 109.3, 48.1, 41.5, 35.8, 32.6, 31.8, 24.8 ppm. ESI HRMS: calcd. for C$_{15}$H$_{17}$NO+Na 250.1208, found 250.1196.

3-(1-methyl-1H-indol-3-yl)cyclopentanone (3at). 4 h, 66% yield; 1H NMR (400 MHz, CDCl$_3$): δ 7.57 (d, $J = 8.0$ Hz, 1H), 7.28-7.26 (m, 1H), 7.22-7.19 (m, 1H), 7.10-7.06 (m, 1H), 6.78 (s, 1H), 3.70 (s, 3H), 3.66-3.64 (m, 1H), 2.73-2.66 (m, 1H), 2.49-2.44 (m, 1H), 2.43-2.34 (m, 2H), 2.31-2.22 (m, 1H), 2.12-2.04 (m, 1H) ppm; 13C NMR (75 MHz, DMSO): δ 218.3, 136.9, 126.8, 125.6, 121.2, 118.9, 118.4, 116.5, 109.7, 44.9, 37.9, 33.1, 32.3, 29.7 ppm. ESI HRMS: calcd. For C$_{14}$H$_{15}$NO+Na 236.1051, found 236.1042.
3-(4-Bromo-1-methyl-1H-indol-3-yl)-1,3-diphenyl-propan-1-one (3ba). 10 h, 70% yield; 1H NMR (400 MHz, CDCl$_3$): δ 7.96 (d, J = 7.6 Hz, 2H), 7.56-7.53 (m, 1H), 7.46-7.42 (m, 2H), 7.39-7.37 (m, 2H), 7.32-7.25 (m, 3H), 7.22-7.20 (m, 2H), 7.05-7.00 (m, 1H), 6.74 (s, 1H), 5.82 (t, J = 7.2 Hz, 1H), 3.82 (ddd, J = 5.6, 20.4, 27.2 Hz, 2H), 3.67 (s, 3H) ppm; 13C NMR (100 MHz, CDCl$_3$): δ 197.9, 144.3, 138.5, 137.0, 132.9, 128.5, 128.3, 128.1, 128.0, 126.1, 124.8, 123.8, 122.4, 118.8, 114.3, 108.5, 46.7, 36.9, 32.9 ppm. ESI HRMS: calcd. for C$_{24}$H$_{20}$BrNO+Na 440.0626, found C$_{24}$H$_{20}$BrNO 440.0620, C$_{24}$H$_{20}$BrNO 442.0612.

3-(1,4-Dimethyl-1H-indol-3-yl)-1,3-diphenyl-propan-1-one (3ca). 8 h, 79% yield; 1H NMR (400 MHz, CDCl$_3$): δ 7.97 (d, J = 8.0 Hz, 2H), 7.59-7.55 (m, 1H), 7.48-7.45 (m, 2H), 7.31-7.25 (m, 4H), 7.19-7.14 (m, 1H), 7.12-7.08 (m, 2H), 6.86 (s, 1H), 6.79 (d, J = 6.4 Hz, 1H), 5.45 (t, J = 7.2 Hz, 1H), 3.74 (ddd, J = 6.8, 24.6, 33 Hz, 2H), 3.72 (s, 3H), 2.57 (s, 3H) ppm; 13C NMR (100 MHz, CDCl$_3$): δ 198.2, 145.4, 137.6, 137.1, 133.0, 131.2, 128.6, 128.4, 128.0, 127.9, 126.5, 126.1, 125.8, 121.7, 120.8, 118.1, 107.0, 47.1, 38.6, 32.8, 20.7 ppm. ESI HRMS: calcd. for C$_{25}$H$_{23}$NO+Na 376.1677, found 376.1680.

3-(5-Methoxy-1-methyl-1H-indol-3-yl)-1,3-diphenyl-propan-1-one (3da). 8 h, 96% yield; 1H NMR (400 MHz, CDCl$_3$): δ 7.97 (d, J = 7.6 Hz, 2H), 7.58-7.54 (m, 1H), 7.47-7.43 (m, 2H), 7.41-7.39 (m, 2H), 7.31-7.26 (m, 2H), 7.21-7.15 (m, 2H), 6.89-6.83 (m, 3H), 5.05 (t, J = 7.2 Hz, 1H), 3.81 (ddd, J = 6.8, 20.2, 29.2 Hz, 2H), 3.77 (s, 3H), 3.69 (s, 3H) ppm; 13C NMR (100 MHz, CDCl$_3$): δ 198.5, 153.5, 144.3, 137.0, 132.9, 132.6, 128.5, 128.4, 128.0, 127.7, 127.2, 126.7, 126.2, 117.2, 111.7, 109.9, 101.4, 55.8, 45.2, 37.9, 32.8 ppm. ESI HRMS: calcd. for C$_{25}$H$_{23}$NO$_2$+Na 392.1626, found 392.1632.

3-(5-Bromo-1-methyl-1H-indol-3-yl)-1,3-diphenyl-propan-1-one (3ea). 8 h, 80% yield; 1H NMR (400 MHz, CDCl$_3$): δ 7.91 (d, J = 7.6 Hz, 2H), 7.54-7.50 (m, 2H), 7.43-7.39 (m, 2H), 7.33-7.31 (m, 2H), 7.27-7.22 (m, 2H), 7.20-7.16 (m, 2H), 7.08-7.05 (m, 1H), 6.83 (s, 1H), 4.98 (t, J = 7.6 Hz, 1H), 3.72 (ddd, J = 7.2, 20.4, 27.6 Hz, 2H), 3.63 (s, 3H) ppm; 13C NMR (100 MHz, CDCl$_3$): δ 198.1, 143.9, 136.9, 135.9, 133.0, 128.5, 128.4, 128.0, 127.6, 127.3, 126.4, 124.4, 121.9, 117.3, 112.2, 110.7, 45.2, 37.8, 32.8 ppm. ESI HRMS: calcd. for C$_{24}$H$_{20}$BrNO+Na 440.0626 found C$_{24}$H$_{20}$BrNO 440.0626, C$_{24}$H$_{20}$BrNO 442.0608.
3-(6-Methoxy-1-methyl-1H-indol-3-yl)-1,3-diphenyl-propan-1-one (3fa). 8 h, 86% yield; 1H NMR (400 MHz, CDCl$_3$): δ 7.92 (d, $J = 7.2$ Hz, 2H), 7.53-7.49 (m, 1H), 7.42-7.38 (m, 2H), 7.35-7.33 (m, 2H), 7.28-7.22 (m, 3H), 7.16-7.12 (m, 1H), 6.71-6.65 (m, 3H), 5.00 (t, $J = 7.2$ Hz, 1H), 3.82 (s, 3H), 3.74 (ddd, $J = 6.8$, 20.2, 27.4 Hz, 2H), 3.62 (s, 3H) ppm; 13C NMR (100 MHz, CDCl$_3$): δ 198.5, 156.3, 144.4, 138.0, 137.0, 132.9, 128.5, 128.4, 128.0, 127.7, 126.2, 125.0, 121.4, 120.2, 117.7, 108.6, 92.73, 55.60, 45.3, 38.1, 32.6 ppm. ESI HRMS: calcd. for C$_{25}$H$_{23}$NO$_2$+Na 392.1626 found 392.1621.

3-(7-Methoxy-1-methyl-1H-indol-3-yl)-1,3-diphenyl-propan-1-one (3ga). 8 h, 91% yield; 1H NMR (400 MHz, CDCl$_3$): δ 7.86 (d, $J = 7.2$ Hz, 2H), 7.49-7.45 (m, 2H), 7.37-7.34 (m, 4H), 7.24-7.19 (m, 3H), 7.14-7.07 (m, 2H), 7.00-6.96 (m, 1H), 5.12 (t, $J = 7.2$ Hz, 1H), 3.93 (ddd, $J = 7.6$, 17.2, 20 Hz, 2H), 3.58 (s, 3H), 2.41 (s, 3H) ppm; 13C NMR (100 MHz, CDCl$_3$): δ 199.0, 144.4, 137.1, 136.8, 133.6, 132.8, 128.4, 128.2, 128.0, 127.5, 126.4, 125.8, 120.2, 119.1, 118.7, 112.9, 108.7, 43.7, 37.0, 29.4, 10.5 ppm. ESI HRMS: calcd. for C$_{25}$H$_{23}$NO$_2$+Na 392.1626 found 392.1619.

1,3-diphenyl-3-(1-phenyl-1H-indol-3-yl)propan-1-one (3ha). 20 h, 60% yield; 1H NMR (400 MHz, CDCl$_3$): δ 7.98 (d, $J = 7.6$ Hz, 2H), 7.58-7.48 (m, 4H), 7.53-7.44 (m, 8H), 7.37-7.30 (m, 3H), 7.26-7.20 (m, 3H), 7.13-7.09 (m, 1H), 5.18 (t, $J = 7.2$ Hz, 1H), 3.86 (ddd, $J = 6.4$, 20.4, 22.8 Hz, 2H) ppm; 13C NMR (100 MHz, CDCl$_3$): δ 198.3, 143.9, 139.7, 137.0, 136.3, 132.9, 129.5, 128.5, 128.4, 128.0, 127.8, 126.4, 126.2, 125.2, 124.1, 122.6, 120.3, 120.0, 119.8, 110.5, 45.1, 38.0 ppm. ESI HRMS: calcd. for C$_{29}$H$_{23}$NO+Na 424.1677, found 424.1674.

3-(1-Methyl-2-phenyl-1H-indol-3-yl)-1,3-diphenyl-propan-1-one (3ia). 14 h, 73% yield; 1H NMR (400 MHz, CDCl$_3$): δ 7.86 (d, $J = 7.6$ Hz, 2H), 7.72 (d, $J = 7.6$ Hz, 1H), 7.54-7.48 (m, 4H), 7.41-7.36 (m, 7H), 7.30-7.25 (m, 3H), 7.20-7.14 (m, 2H), 5.07 (t, $J = 7.2$ Hz, 1H), 3.92 (ddd, $J = 7.2$, 15.6, 20.4 Hz, 2H), 3.56 (s, 3H) ppm; 13C NMR (100 MHz, CDCl$_3$): δ 198.4, 144.6, 138.3, 137.3, 136.8, 132.7, 131.8, 130.8, 128.3, 128.2, 128.0, 127.5, 126.4, 125.7, 121.4, 120.1, 119.2, 114.6, 109.5, 44.2, 37.5, 30.6 ppm. ESI HRMS: calcd. for C$_{30}$H$_{25}$NO+Na 438.1834 found 438.1833.

3-(1H-Indol-3-yl)-1,3-diphenyl-propan-1-one (5aa). 12 h, 90% yield; 1H NMR (400 MHz, DMSO): δ 10.9 (s, 1H), 8.03 (d, $J = 7.2$ Hz, 2H), 7.63-7.61 (m, 1H), 7.54-7.50 (m, 2H), 7.46-7.42 (m, 3H), 7.38-7.33 (m, 2H), 7.26-7.22 (m, 2H), 7.13-7.12 (m, 1H), 7.06-7.03 (m,
1H), 6.93-6.90 (m, 1H), 4.90 (t, \(J = 6.4 \) Hz, 1H), 3.90 (ddd, \(J = 6.8, 20, 40.8 \) Hz, 2H) ppm; \(^{13}\)C NMR (100 MHz, DMSO): \(\delta \) 214.7, 198.6, 145.5, 137.1, 136.6, 133.3, 128.9, 128.3, 128.0, 126.6, 126.0, 122.1, 121.2, 118.9, 118.5, 118.2, 111.6, 44.5, 37.9 ppm. ESI HRMS: calcd. for C\(_{23}\)H\(_{19}\)NO+Na 348.1364, found 348.1365.

3-(2-Chloro-phenyl)-3-(1H-indol-3-yl)-1-phenyl-propan-1-one (5ab). 12 h, 93% yield; \(^{1}\)H NMR (400 MHz, DMSO): \(\delta \) 10.93 (s, 1H), 8.03 (d, \(J = 7.2 \) Hz, 2H), 7.65-7.62 (m, 1H), 7.54-7.50 (m, 2H), 7.46-7.42 (m, 3H), 7.34-7.30 (m, 2H), 7.23-7.15 (m, 2H), 7.07-7.03 (m, 1H), 6.94-6.91 (m, 1H), 5.38 (t, \(J = 7.2 \) Hz, 1H), 4.02 (dd, \(J = 7.2, 16.8 \) Hz, 1H), 3.72 (dd, \(J = 6.4, 17.6 \) Hz, 1H) ppm; \(^{13}\)C NMR (100 MHz, DMSO): \(\delta \) 203.1, 147.4, 141.8, 141.4, 138.3, 137.7, 134.5, 134.4, 133.8, 133.2, 132.7, 132.3, 131.5, 127.8, 127.7, 126.3, 123.6, 121.8, 116.6, 48.8, 39.9 ppm. ESI HRMS: calcd. for C\(_{23}\)H\(_{18}\)ClNO+Na 382.0975, found C\(_{23}\)H\(_{18}\)\(_{35}\)ClNNaO 382.0967, C\(_{23}\)H\(_{18}\)\(_{37}\)ClNNaO 384.0947.

3-(3-Chloro-phenyl)-3-(1H-indol-3-yl)-1-phenyl-propan-1-one (5ac). 12 h, 90% yield; \(^{1}\)H NMR (400 MHz, CDCl\(_3\)): \(\delta \) 8.08 (s, 1H), 7.95 (d, \(J = 7.6 \) Hz, 2H), 7.58-7.55 (m, 1H), 7.47-7.43 (m, 3H), 7.35-7.30 (m, 2H), 7.28-7.26 (m, 1H), 7.21-7.14 (m, 3H), 7.08-7.04 (m, 1H), 6.95-6.94 (m, 1H), 5.07 (t, \(J = 7.2 \) Hz, 1H), 3.77 (ddd, \(J = 6.4, 20.4, 44.4 \) Hz, 2H) ppm; \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta \) 198.2, 146.4, 136.8, 136.5, 134.1, 133.2, 129.6, 128.6, 128.0, 127.9, 126.5, 126.1, 122.2, 121.4, 119.5, 119.2, 118.4, 111.2, 44.8, 37.8 ppm. ESI HRMS: calcd. for C\(_{23}\)H\(_{18}\)ClNO+Na 382.0975, found C\(_{23}\)H\(_{18}\)\(_{35}\)ClNNaO 382.0967, C\(_{23}\)H\(_{18}\)\(_{37}\)ClNNaO 384.0947.

3-(4-chlorophenyl)-3-(1H-indol-3-yl)-1-phenylpropan-1-one (5ad). 12 h, 87% yield; \(^{1}\)H NMR (400 MHz, DMSO): \(\delta \) 10.91 (s, 1H), 8.02 (d, \(J = 7.6 \) Hz, 2H), 7.63-7.60 (m, 1H), 7.52-7.48 (m, 2H), 7.44-7.42 (m, 3H), 7.38 (s, 1H), 7.33-7.31 (m, 1H), 7.28-7.26 (m, 2H), 7.04 (t, \(J = 7.2 \) Hz, 1H), 6.90 (t, \(J = 7.6 \) Hz, 1H), 4.89 (t, \(J = 7.2 \) Hz, 1H), 3.89 (ddd, \(J = 6.8, 20.8, 35.2 \) Hz, 2H) ppm; \(^{13}\)C NMR (100 MHz, DMSO): \(\delta \) 198.4, 144.5, 137.0, 136.6, 133.4, 130.5, 129.9, 128.9, 128.3, 128.2, 126.4, 122.2, 121.3, 118.8, 118.6, 117.8, 111.6, 44.2, 37.2 ppm. ESI HRMS: calcd. for C\(_{23}\)H\(_{18}\)ClNO+Na 382.0975, found C\(_{23}\)H\(_{18}\)\(_{35}\)ClNNaO 382.0967, C\(_{23}\)H\(_{18}\)\(_{37}\)ClNNaO 384.0940.

3-(4-Bromo-phenyl)-3-(1H-indol-3-yl)-1-phenyl-propan-1-one (5ae). 14 h, 90% yield; \(^{1}\)H NMR (400 MHz, DMSO): \(\delta \) 10.91 (s, 1H), 8.02-8.00 (m , 2H), 7.63-7.60 (m, 1H), 7.52-7.48 (m, 2H), 7.44-7.42 (m, 3H), 7.38 (s, 1H), 7.33-7.31 (m, 1H), 7.28-7.26 (m, 2H), 7.03 (t, \(J = 7.2 \) Hz, 1H), 6.90 (t, \(J = 7.2\)Hz, 1H), 4.87 ppm; \(^{13}\)C NMR (100 MHz, DMSO): \(\delta \) 214.7, 198.6, 145.5, 137.1, 136.6, 133.3, 128.9, 128.3, 128.0, 126.6, 126.0, 122.1, 121.2, 118.9, 118.5, 118.2, 111.6, 44.5, 37.9 ppm. ESI HRMS: calcd. for C\(_{23}\)H\(_{19}\)NO+Na 348.1364, found 348.1365.
(t, J = 5.6 Hz, 1H), 3.88 (ddd, J = 6.4, 20.4, 33.6 Hz, 2H) ppm; \(^{13}C\) NMR (100 MHz, DMSO): \(\delta\) 198.4, 145.0, 137.0, 136.6, 133.4, 131.1, 130.3, 128.9, 128.3, 126.4, 122.2, 121.3, 119.0, 118.8, 118.6, 117.8, 111.6, 44.2, 37.2 ppm. ESI HRMS: calcd. for C\(_{23}\)H\(_{18}\)BrNO+Na 426.0469, found C\(_{23}\)H\(_{18}\)BrNNaO 426.0483, C\(_{23}\)H\(_{18}\)BrNNaO 428.3361.

3-(1H-indol-3-yl)-3-(4-methoxyphenyl)-1-phenylpropan-1-one (5af). 26 h, 63% yield; \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 8.00 (s, 1H), 7.91 (d, J = 7.6 Hz, 2H), 7.51-7.49 (m, 1H), 7.42-7.48 (m, 3H), 7.27-7.22 (m, 3H), 7.13-7.09 (m, 1H), 7.01-6.98 (m, 1H), 6.90 (s, 1H), 6.77 (d, J = 8.4 Hz, 2H), 5.00 (t, J = 7.2 Hz, 1H), 3.71 (ddd, J = 6.4, 20, 30 Hz, 2H), 3.70 (s, 3H) ppm; \(^{13}C\) NMR (100 MHz, CDCl\(_3\)): \(\delta\) 198.8, 157.8, 137.0, 136.6, 133.0, 128.7, 128.5, 128.0, 126.5, 122.0, 121.3, 119.5, 119.4, 119.2, 113.7, 111.1, 55.1, 45.3, 37.4 ppm. ESI HRMS: calcd. for C\(_{24}\)H\(_{21}\)NO\(_2\)+Na 378.1470, found 378.1466.

3-(1H-indol-3-yl)-1-phenyl-3-(4-(trifluoromethyl)phenyl)propan-1-one (5ag). 26 h, 70% yield; \(^1\)H NMR (400 MHz, DMSO): \(\delta\) 10.96 (s, 1H), 8.04 (d, J = 7.6 Hz, 2H), 7.67-7.65 (m, 3H), 7.62-7.58 (m, 2H), 7.54-7.50 (m, 2H), 7.54-7.50 (m, 2H), 7.48-7.43 (m, 2H), 7.34-7.32 (m, 1H), 7.06-7.03 (m, 1H), 6.94-6.90 (m, 1H), 4.99 (s, 1H), 3.97 (ddd, J = 6.8, 21.2, 24.4 Hz, 2H) ppm; \(^{13}C\) NMR (100 MHz, DMSO): \(\delta\) 198.3, 150.4, 136.9, 136.5, 133.4, 128.9, 128.8, 128.3, 126.4, 125.2, 125.2, 122.4, 121.3, 118.7, 118.7, 117.4, 111.6, 44.0, 37.6 ppm. ESI HRMS: calcd. for C\(_{24}\)H\(_{18}\)F\(_3\)NO+Na 416.1238, found 416.1240.

3-(1H-indol-3-yl)-3-naphthalen-1-yl-1-phenyl-propan-1-one (5ah). 12 h, 87% yield; \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 8.35-8.33 (m, 1H), 7.97-7.95 (m, 2H), 7.90-7.87 (m, 2H), 7.75-7.73 (m, 1H), 7.58-7.54 (m, 1H), 7.50-7.44 (m, 5H), 7.42-7.33 (m, 2H), 7.29-7.26 (m, 1H), 7.17-7.14 (m, 1H), 7.04-7.00 (m, 1H), 6.77-6.76 (m, 1H), 5.97 (t, J = 6.8 Hz, 1H), 3.89 (ddd, J = 8.0, 21.2, 77.2 Hz, 2H) ppm; \(^{13}C\) NMR (100 MHz, CDCl\(_3\)): \(\delta\) 198.5, 139.9, 137.0, 136.6, 134.0, 133.1, 131.4, 128.8, 128.6, 128.0, 127.0, 126.6, 126.1, 125.5, 125.3, 124.3, 123.6, 122.2, 122.0, 119.4, 119.3, 118.9, 111.1, 44.6, 33.2 ppm. ESI HRMS: calcd. for C\(_{27}\)H\(_{21}\)NO+Na 398.1521, found 398.1530.

3-(1H-indol-3-yl)-1-phenyl-3-(thiophen-2-yl)propan-1-one (5ai). 48 h, 40% yield; \(^1\)H NMR (400 MHz, DMSO): \(\delta\) 10.92 (s, 1H), 8.02 (d, J = 7.2Hz, 2H), 7.64-7.60 (m, 1H), 7.51 (t, J = 7.2 Hz, 3H), 7.35-7.33 (m, 2H), 7.23-7.22 (m, 1H), 7.08-7.04 (m, 1H), 7.00-6.99 (m, 1H), 6.95 (t, J = 7.2 Hz, 1H), 6.88-6.86 (m, 1H), 5.20 (t, J = 7.2 Hz, 1H), 3.92 (d, J = 7.2 Hz, 2H) ppm; \(^{13}C\) NMR
(100 MHz, DMSO): δ 198.2, 149.9, 136.9, 136.6, 133.4, 128.9, 128.3, 126.7, 126.3, 124.1, 123.8, 122.4, 121.3, 118.9, 118.7, 117.9, 111.7, 45.4, 32.9 ppm. ESI HRMS: calcd. for C$_{21}$H$_{17}$NOS+Na 354.0929, found 354.0930.

$\text{3-(1H-Indol-3-yl)-1-naphthalen-2-yl-3-phenyl-propan-1-one (5ak).}$ 11 h, 80% yield; 1H NMR (400 MHz, DMSO): δ 10.89 (s, 1H), 8.81 (s, 1H), 8.14 (d, $J = 8.0$ Hz, 1H), 7.98-7.07 (m, 3H), 7.68-7.60 (m, 2H), 7.47-7.45 (m, 3H), 7.39 (m, 1H), 7.34-7.32 (m, 1H), 7.24 (t, $J = 7.2$ Hz, 2H), 7.11 (t, $J = 7.2$Hz, 1H), 7.06-7.02 (m, 1H), 6.93-6.89 (m, 1H), 4.97 (t, $J = 7.2$Hz, 1H), 4.02 (ddd, $J = 7.2$, 20.8, 66.8 Hz, 2H) ppm; 13C NMR (100 MHz, DMSO): δ 198.5, 145.5, 136.6, 135.2, 134.4, 132.4, 130.3, 129.8, 128.8, 128.4, 128.3, 128.0, 127.8, 127.1, 126.6, 126.0, 123.8, 122.1, 121.2, 118.9, 118.5, 118.2, 111.6, 44.4, 38.0 ppm. ESI HRMS: calcd. for C$_{27}$H$_{21}$NO+Na 398.1521, found 398.1511.

$\text{3-(1H-Indol-3-yl)-1-naphthalen-2-yl-3-phenyl-propan-1-one (5ak).}$ 11 h, 80% yield; 1H NMR (400 MHz, DMSO): δ 10.89 (s, 1H), 8.81 (s, 1H), 8.14 (d, $J = 8.0$ Hz, 1H), 7.98-7.07 (m, 3H), 7.68-7.60 (m, 2H), 7.47-7.45 (m, 3H), 7.39 (m, 1H), 7.34-7.32 (m, 1H), 7.24 (t, $J = 7.2$ Hz, 2H), 7.11 (t, $J = 7.2$Hz, 1H), 7.06-7.02 (m, 1H), 6.93-6.89 (m, 1H), 4.97 (t, $J = 7.2$Hz, 1H), 4.02 (ddd, $J = 7.2$, 20.8, 66.8 Hz, 2H) ppm; 13C NMR (100 MHz, DMSO): δ 198.5, 145.5, 136.6, 135.2, 134.4, 132.4, 130.3, 129.8, 128.8, 128.4, 128.3, 128.0, 127.8, 127.1, 126.6, 126.0, 123.8, 122.1, 121.2, 118.9, 118.5, 118.2, 111.6, 44.4, 38.0 ppm. ESI HRMS: calcd. for C$_{27}$H$_{21}$NO+Na 398.1521, found 398.1511.

$\text{1-Furan-2-yl-3-(1H-indol-3-yl)-3-phenyl-propan-1-one (5al).}$ 16 h, 73% yield; 1H NMR (400 MHz, DMSO): δ 10.88 (s, 1H), 7.95 (s, 1H), 7.60-7.59 (m, 1H), 7.43-7.38 (m, 3H), 7.33-7.30 (m, 2H), 7.24-7.20 (m, 2H), 7.12-7.08 (m, 1H), 7.04-7.00 (m, 1H), 6.91-6.88 (m, 1H), 6.69-6.68 (m, 1H), 4.85 (s, 1H), 3.64 (ddd, $J = 6.4$, 19.6, 60 Hz, 2H) ppm; 13C NMR (100 MHz, DMSO): δ 186.9, 152.4, 148.1, 148.0, 145.1, 136.5, 128.4, 127.9, 126.5, 126.1, 122.1, 121.3, 119.3, 118.9, 118.6, 117.8, 112.7, 112.7, 111.6, 44.2, 38.0 ppm. ESI HRMS: calcd. for C$_{21}$H$_{17}$NO$_2$+Na 338.1157, found 338.1157.

$\text{5-(1H-Indol-3-yl)-1,5-diphenyl-pent-1-en-3-one (5an).}$ 12 h, 62% yield; 1H NMR (400 MHz, DMSO): δ 10.88 (s, 1H), 7.69-7.67 (m ,2H), 7.63 (s , 1H), 7.43-7.38 (m, 6H), 7.33-7.30 (m, 2H), 7.25-7.22 (m, 2H), 7.13-7.09 (m, 1H), 7.05-7.01 (m, 1H), 6.96 (s, 1H), 6.92-6.88 (m, 1H), 4.84 (t, $J = 7.6$ Hz, 1H), 3.52 (ddd, $J = 7.6$, 20, 66.4 Hz, 2H) ppm; 13C NMR (100 MHz, DMSO): δ 198.7, 145.4, 142.4, 136.6, 134.7, 130.6, 129.1, 128.6, 128.3, 127.9, 126.9, 126.6, 126.0, 122.1, 121.2, 118.9, 118.4, 118.0, 111.6, 46.5, 38.0 ppm. ESI HRMS: calcd. for C$_{25}$H$_{21}$NO+Na 374.1521, found 374.1514.

$\text{2-(1H-Indol-3-yl)-1,4-diphenyl-butane-1,4-dione (5ao).}$ 12 h, 99% yield; 1H NMR (400 MHz, CDCl$_3$): δ 8.27 (s, 1H), 8.04-8.02 (m, 2H), 7.95-7.93 (m, 2H), 7.77-7.75 (m, 1H), 7.53-7.49 (m, 1H), 7.43-7.37 (m, 3H), 7.32-7.27 (m, 2H), 7.22-7.14 (m, 2H), 6.92 (s, 1H), 5.58 (dd, $J = 3.2$, 10.4 Hz, 1H), 4.24 (dd, $J = 10.4$, 18.4 Hz, 1H) 3.40 (dd, $J = 3.6$, 18.4 Hz, 1H) ppm; 13C NMR (100 MHz, CDCl$_3$): δ 199.2, 198.8, 136.4, 136.4, 133.2, 132.7, 128.7, 128.5, 128.4, 128.1, 125.9, 122.8, 122.4, 119.9, 118.6, 112.9, 111.5, 42.8, 39.6 ppm. ESI HRMS: calcd. for C$_{24}$H$_{19}$NO$_2$+Na 376.1313,
1-(1H-Indol-3-yl)-pentan-3-one (5ap). 12 h, 91% yield; \(^1\)H NMR (400 MHz, DMSO): \(\delta\) 10.77 (s, 1H), 7.53-7.51 (m, 1H), 7.35-7.33 (m, 1H), 7.09-7.05 (m, 2H), 6.99-6.96 (m, 1H), 2.90 (t, \(J = 7.2\) Hz, 2H), 2.80 (t, \(J = 7.2\) Hz, 2H), 2.45 (q, \(J = 7.2\) Hz, 2H), 0.93 (s, 3H) ppm; \(^{13}\)C NMR (100 MHz, DMSO): \(\delta\) 210.9, 136.5, 127.2, 122.4, 121.2, 118.5, 118.4, 113.8, 111.5, 42.4, 35.2, 19.3, 7.8 ppm. ESI HRMS: calcd. for C\(_{13}\)H\(_{15}\)NO+Na 224.1051, found 224.1044.

4-(1H-Indol-3-yl)-pentan-2-one (5aq). 12 h, 76% yield; \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 8.05 (s, 1H), 7.64 (d, \(J = 8.0\) Hz, 1H), 7.33-7.32 (m, 1H), 7.20-7.16 (m, 1H), 7.13-7.09 (m, 1H), 6.93 (s, 1H), 3.66-3.60 (m, 1H), 2.81 (ddd, \(J = 6.0, 18.8, 86.4\) Hz, 2H), 2.08 (s, 3H), 1.37 (d, \(J = 6.8\) Hz, 3H) ppm; \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 208.8, 136.4, 126.2, 121.9, 120.8, 120.1, 119.1, 119.0, 111.3, 51.4, 30.4, 26.9, 21.2 ppm. ESI HRMS: calcd. for C\(_{13}\)H\(_{15}\)NO+Na 224.1051, found 224.1042.

3-(1H-Indol-3-yl)-cyclohexanone (5as). 16 h, 41% yield; \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 8.18 (s, 1H), 7.66 (d, \(J = 8.0\) Hz, 1H), 7.39 (d, \(J = 8.0\) Hz, 1H), 7.27-7.22 (m, 1H), 7.18-7.14 (m, 1H), 6.98 (s, 1H), 3.51-3.44 (m, 1H), 2.86-2.81 (m, 1H), 2.69-2.63 (m, 1H), 2.53-2.39 (m, 2H), 2.31-2.27 (m, 1H), 2.11-1.95 (m, 2H), 1.91-1.81 (m, 1H) ppm; \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 212.0, 136.4, 126.0, 122.1, 120.3, 119.5, 119.3, 118.9, 111.3, 48.0, 41.5, 35.9, 31.6, 24.8 ppm. ESI HRMS: calcd. for C\(_{14}\)H\(_{15}\)NO+Na 236.1051, found 236.1043.

3-(1H-Indol-3-yl)-cyclopentanone (5at). 16 h, 51% yield; \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 8.15 (s, 1H), 7.64-7.62 (m, 1H), 7.38-7.36 (m, 1H), 7.24-7.20 (m, 1H), 7.16-7.20 (m, 1H), 6.96-6.95 (m, 1H), 3.75-3.67 (m, 1H), 2.79-2.72 (m, 1H), 2.56-2.50 (m, 1H), 2.50-2.41 (m, 2H), 2.40-2.27 (m, 1H), 2.17-2.08 (m, 1H) ppm; \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 219.6, 136.6, 126.5, 122.2, 119.9, 119.4, 119.0, 118.4, 111.3, 45.2, 38.1, 33.6, 29.8 ppm. ESI HRMS: calcd. for C\(_{13}\)H\(_{13}\)NO+Na 222.0895, found 222.0892.

3-(2-Methyl-1H-indol-3-yl)-1,3-diphenyl-propan-1-one (5ba). 16 h, 76% yield; \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 7.86 (d, \(J = 7.2\) Hz, 2H), 7.75 (s, 1H), 7.50-7.46 (m, 2H), 7.38-7.34 (m, 4H), 7.25-7.18 (m, 3H), 7.15-7.11 (m, 1H), 7.06-7.03 (m, 1H), 7.00-6.96 (m, 1H), 5.08 (t, \(J = 6.8\) Hz, 1H), 3.92 (ddd, \(J = 7.6, 24.8, 26\) Hz, 2H), 2.36 (s, 3H) ppm; \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 199.1, 144.2, 137.1, 135.4, 132.9, 131.7, 128.4, 128.2, 128.0, 127.5, 127.4, 125.8, 120.6, 119.1, 119.1, 113.5, 110.4,
1,3-Diphenyl-3-(1H-pyrazol-4-yl)-propan-1-one (5ca). 10 h, 30% yield; 1H NMR (400 MHz, CDCl$_3$): δ 7.97 (d, $J = 7.6$ Hz, 2H), 7.57-7.49 (m, 3H), 7.45-7.42 (m, 2H), 7.33-7.32 (m, 4H), 7.30-7.25 (m, 1H), 6.23 (s, 1H), 5.2 (dd, $J = 5.2$, 8.4 Hz, 1H), 4.49 (q, $J = 8.8$ Hz, 1H) 3.64 (dd, $J = 4.8$, 17.6 Hz, 1H) ppm; 13C NMR (100 MHz, CDCl$_3$): δ 196.6, 140.7, 139.2, 136.4, 133.3, 129.7, 128.8, 128.6, 128.2, 127.9, 126.6, 105.5, 60.7, 44.1 ppm. ESI HRMS: calcd. for C$_{24}$H$_{21}$NO$^+$$\text{Na}$ 362.1521, found 362.1508.

1,3-Diphenyl-3-(1H-pyrrol-2-yl)-1,3-diphenylpropan-1-one (7a). 8 h, 33% yield; 1H NMR (400 MHz, CDCl$_3$): δ 7.93 (d, $J = 7.2$ Hz, 2H), 7.57-7.55 (m, 1H), 7.46-7.42 (m, 2H), 7.32-7.17 (m, 5H), 6.54 (s, 1H), 6.08 (s, 2H), 4.81 (t, $J = 7.2$ Hz, 1H), 3.80 (dd, $J = 7.2$, 17.2 Hz, 1H), 3.50 (dd, $J = 7.2$, 17.2 Hz, 1H), 3.38 (s, 3H) ppm; 13C NMR (100 MHz, CDCl$_3$): δ 197.8, 143.2, 137.0, 134.3, 133.0, 128.6, 128.5, 128.0, 127.9, 126.4, 121.9, 106.3, 105.6, 45.5, 38.2, 33.9 ppm. ESI HRMS: calcd. for C$_{20}$H$_{19}$NO$^+$$\text{Na}$ 312.1364, found 312.1365.

1,3-Diphenyl-3-(1H-pyrrol-3-yl)-1,3-diphenylpropan-1-one (7b). 8 h, 6% yield; 1H NMR (400 MHz, CDCl$_3$): δ 7.93 (d, $J = 7.6$ Hz, 2H), 7.55-7.51 (m, 1H), 7.45-7.41 (m, 2H), 7.32-7.30 (m, 3H), 7.28-7.26 (m, 1H), 7.18-7.14 (m, 1H), 6.48 (s, 1H), 6.32 (s, 1H), 5.97 (s, 1H), 4.69 (t, $J = 7.2$ Hz, 1H), 3.62 (ddd, $J = 6.4$, 20.4, 91.6 Hz, 4H), 3.05 (s, 3H) ppm; 13C NMR (100 MHz, CDCl$_3$): δ 197.9, 143.3, 137.1, 134.4, 132.9, 128.5, 128.4, 127.9, 127.8, 126.4, 104.2, 45.4, 38.6, 30.6 ppm. ESI HRMS: calcd. for C$_{20}$H$_{19}$NO$^+$$\text{Na}$ 312.1364, found 312.1364.

(3R,3'S)-3,3'-(1-methyl-1H-pyrrole-2,5-diyl)bis(1,3-diphenylpropan-1-one) (7c). 8 h, 16% yield; 1H NMR (400 MHz, CDCl$_3$): δ 7.90 (d, $J = 7.2$ Hz, 4H), 7.55-7.52 (m, 2H), 7.44-7.41 (m, 4H), 7.27-7.23 (m, 4H), 7.18-7.14 (m, 6H), 6.04 (s, 2H), 4.71 (t, $J = 7.2$ Hz, 2H), 3.61 (ddd, $J = 6.4$, 20.4, 91.6 Hz, 4H), 3.05 (s, 3H) ppm; 13C NMR (100 MHz, CDCl$_3$): δ 197.9, 143.3, 137.1, 134.4, 132.9, 128.5, 128.4, 127.9, 127.8, 126.4, 104.2, 45.4, 38.6, 30.6 ppm. ESI HRMS: calcd. for C$_{35}$H$_{31}$NO$_2$$^+$$\text{Na}$ 520.2252, found 520.2250.

(3R,3'R)-3,3'-(1-methyl-1H-pyrrole-2,5-diyl)bis(1,3-diphenylpropan-1-one) (7d). 8 h, 17% yield; 1H NMR (400 MHz, CDCl$_3$): δ 7.92-7.90 (m, 4H), 7.55-7.52 (m, 2H), 7.44-7.41 (m, 4H), 7.26-7.15 (m, 4H), 7.11-7.09 (m, 6H), 6.00 (s, 2H), 4.75 (t, $J = 7.2$ Hz, 2H), 3.75 (dd, $J = 7.2$, 17.2 Hz, 2H), 3.43 (dd, $J = 7.2$, 17.2 Hz, 2H), 2.99 (s, 3H) ppm; 13C NMR
[75 MHz, DMSO]: \(\delta \) 197.8, 143.7, 136.7, 134.2, 133.2, 128.7, 128.2, 128.0, 127.7, 126.1, 104.2, 44.6, 37.9, 30.2 ppm. ESI HRMS: calcd. for C_{35}H_{31}NO_{2}^{+}Na 520.2252, found 520.2258.

3. Synthetic Applications and Characterization Data

General Procedure for Synthesis of Compound 8a:

1. **1b** (20.9 mg, 0.1 mmol) and **2p** (9.2 mg, 0.11 mmol) worked under standard conditions to produce **3bp** (60% yield). To the MeOH (1.5 mL) solution of **3bp** (17.6 mg, 0.06 mmol) at r.t. was added NaBH\(_4\) (2.3 mg, 0.06 mmol). The resulting mixture was further stirred at room temperature for 2 h, then quenched with water. The aqueous layer was extracted further with ethyl acetate three times; then the combined organic layer was washed with brine and dried over Na\(_2\)SO\(_4\). Then the organic layer was concentration in vacuo. In this step, **3bp** would convert to **3bp-a** completely.

2. To a mixture of **3bp-a** (17.7 mg, 0.06 mmol), K\(_2\)CO\(_3\) (16.6 mg, 0.12 mmol), KI (19.8 mg, 0.12 mmol) and CuI (2.9 mg, 0.015 mmol) in anhydrous dioxane (0.8 mL), in a dry flask under nitrogen atmosphere, was added TMEDA (3.5 mg, 0.03 mmol), and the reaction mixture was stirred at 140 °C for 48 h. Then the mixture quenched with water. The aqueous layer was extracted further with ethyl acetate three times; then the combined organic layer was washed with brine and dried over Na\(_2\)SO\(_4\), and the solvent was evaporated under reduced pressure. The residue was purified by flash chromatography (ethyl acetate: petroleum ether = 1: 200) to give compound **8a** (80% conversion) as white solid.\(^3\)

The general procedure for synthesis of compound **8b** was same as compound **8a**.
General Procedure for Synthesis of Compound 8c and 8d:

1b (20.9 mg, 0.1 mmol) and 2n (25.7 mg, 0.11 mmol) worked under standard conditions to produce 3bn (58% yield). To the DMF (1.0 mL) solution of 3bn (27 mg, 0.058 mmol) was added Pd(OAc)$_2$ (1.9 mg, 0.0087 mmol), PPh$_3$ (7.6 mg, 0.029 mmol), DIEA (15 mg, 0.116 mmol). The mixture was stirred at 100 °C under Ar atmosphere for 18 h. Then the mixture quenched with water. The aqueous layer was extracted further with ethyl acetate three times; then the combined organic layer was washed with brine and dried over Na$_2$SO$_4$, and the solvent was evaporated under reduced pressure. The residue was purified by flash chromatography (ethyl acetate: petroleum ether = 1: 50) to give compound 8c (57.3% yield) and 8d (28.7% yield) as yellow solid.[4]

2-ethyl-6-methyl-2,3,4,6-tetrahydrooxepino[4,3,2-cd]indole (8a). 48 h, 80% conversion; 1H NMR (300 MHz, DMSO): δ 7.00 (s, 1H), 6.99-6.89 (m, 2H), 6.45-6.42 (m, 1H), 3.96-3.92 (m, 1H), 3.68 (s, 3H), 3.03-2.98 (m, 1H), 2.75-2.74 (m, 1H), 2.15-2.10 (m, 1H), 1.86-1.69 (m, 3H), 1.05-0.99 (m, 3H) ppm; 13C NMR (75 MHz, DMSO): δ 152.0, 138.8, 124.6, 121.6, 117.4, 112.0, 105.0, 101.9, 83.7, 34.9, 32.4, 29.4, 24.6, 10.0 ppm. ESI HRMS: calcd. for C$_{14}$H$_{18}$NO+H 216.1388, found 216.1386.

6-methyl-2,4-diphenyl-2,3,4,6-tetrahydrooxepino[4,3,2-cd]indole (8b). 48 h, 72% conversion; 1H NMR (400 MHz, CDCl$_3$): δ 7.30-7.24 (m, 4H), 7.23-7.17 (m, 4H), 7.15-7.13 (m, 1H), 7.11-7.09 (m, 2H), 6.96-6.94 (m, 1H), 6.72-6.70 (m, 2H), 5.44 (d, $J = 7.2$ Hz, 1H), 4.72 (t, $J = 4.0$ Hz, 1H), 3.74 (s, 3H), 3.01 (ddd, $J = 4.4$, 9.8, 13 Hz, 1H), 2.60 (dd, $J = 4.0$, 14.8 Hz, 1H) ppm; 13C NMR (75 MHz, CDCl$_3$): δ 152.5, 146.7, 143.6, 139.2, 128.3, 126.9, 126.1, 125.4, 122.6, 118.2, 115.1, 106.3, 102.0, 78.8, 46.6, 40.6, 33.0 ppm. ESI HRMS: calcd. for C$_{24}$H$_{22}$NO+H 340.1701, found 340.1700.
(Z)-1-methyl-3,7-diphenyl-3,4-dihydrocycloocta[cd]indol-5(1H)-one (8c) & (E)-1-methyl-3,7-diphenyl-3,4-dihydrocycloocta[cd]indol-5(1H)-one (8d), (8c : 8d = 2 : 1). 18 h, 86% yield; 1H NMR (400 MHz, CDCl$_3$): δ 7.38-7.29 (m, 8H, 8c and 3H, 8d), 7.28-7.24 (m, 2H, 8c and 1H, 8d), 7.18-7.15 (m, 3H, 8c and 2H, 8d), 7.06-7.02 (m, 1H, 8c), 6.95-6.92 (m, 1H, 8d), 6.43 (s, 1H, 8c), 6.35 (s, 1H, 8d), 4.74-4.71 (m, 1H, 8d), 4.66 (d, J = 10.4 Hz, 1H, 8c), 3.74 (s, 3H, 8c), 3.69 (s, 2H, 8d), 3.56-3.48 (m, 2H, 8c), 3.26-3.20 (m, 1H, 8d) ppm. ESI HRMS (8c): calcd. for C$_{26}$H$_{21}$NO$^+$Na 386.1521, found 386.1521.

Structure Determination

The structure of compound 8c and compound 8d were determined by NOE.
irradiation of H_a at 6.44 ppm
noe of H_c at 7.34 ppm
noe of H_d at 4.68 ppm

irradiation of H_b at 6.35 ppm
noe of H_e at 7.36 ppm
Reference

4. Mechanism Study

Deuterium-labeling experiments were carried out to study the mechanism of this alkylation reaction. 1a was stirred in the absence of alkynes for 2.5 h, then D$_2$O was added and stirred for 0.5 h. 1H NMR indicated the possibility of the reaction pathway via C-H activation.
5. NMR Spectra of 3-alkyl indole
noe of H_b at 6.55 ppm
noe of H_a at 4.82 ppm
noe of H_c at 6.55 ppm

irradiation of H_a at 3.38 ppm
Irradiation of H\textsubscript{a} at 3.04 ppm
defines the area

Noe of H\textsubscript{b} at 4.70 ppm

Noc of H\textsubscript{c} at 7.16 ppm