Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Information

Reversal of H-bonding Direction by N- Sulfonation: A Case Study With a Synthetic Reverse-Turn Peptide Motif*

Kuruppanthara N. Vijayadas, [†] Amol S.Kotmale, [§] Shridhar H. Thorat, [‡] Rajesh G. Gonnade, [‡] Roshna V. Nair, ^{†, ±} Pattuparambil. R. Rajamohanan, [§] and Gangadhar J. Sanjayan^{*},[†]

[†]Division of Organic Chemistry, [§]Central NMR Facility, [‡]Center for Materials Characterization, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India. [±]Current Address: Max-Planck-Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany.

Contents	S1
General methods	S2
Synthetic Schemes	S3-S4
Experimental procedures	S5-S14
¹ H NMR spectra of compounds	S15-S22
¹³ C and DEPT-135 spectra of compounds	\$23-\$38
Mass spectra of compounds	S39-S46
2D COSY, TOCSY, HMBC and NOESY spectra of compounds 2-7	S47-S59
DMSO- d_6 titration studies of 2-7 in CDCl ₃	S60-S63
Variable Temperature studies of 2-7 in CDCl ₃	S64- S67
Crystal Data for compounds 2-7	S68-S71
Crystal structure of 7	S72
References	S72

General Methods.

Unless otherwise stated, all the chemicals and reagents were obtained commercially. Dry solvents were prepared by the standard procedures. Analytical Thin Layer Chromatography was done on pre-coated silica gel plates (Kieselgel $60F_{254}$, Merck). Unless otherwise stated Column Chromatographic purifications were done with 100-200 or 240-400 Mesh Silica gel. NMR spectra were recorded in CDCl₃ on AV 200 MHz, AV 400 MHz, JEOL 400MHz or AV 500 MHz spectrometers. All chemical shifts are reported in δ ppm downfield to TMS and peak multiplicities as singlet (s), doublet (d), quartet (q), broad singlet (bs), and multiplet (m) etc. The titration studies were done in CDCl₃. Elemental analyses were performed on an Elmentar-Vario-EL (Heraeus Company Ltd., Germany). IR spectra were recorded in CHCl₃ using Shimadzu FTIR-8400 spectrophotometer. Melting points were determined on a Buchi Melting Point B-540. MALDI-TOF/TOF mass spectra were obtained from ABSCIEX TOF/TOFTM 5800 mass Spectrometer.

Synthetic Schemes

Reagents and Conditions: (i) Boc-^LPro-OH, Ethylchloroformate, Et₃N, THF, 70°C, 48h; (ii) (a) LiOH.H₂O, MeOH, H₂O, RT, 3h (b) HBTU, Et₃N, ⁱBuNH₂, RT, 12h; (iii) (a) ii(a) (b) HBTU, Et₃N, 4-Br-C₆H₄-NH₂, DCM, RT, 12h; (iv) (a) TFA, DCM, RT, 3h, (b) PivCl, Et₃N, DCM, RT, 12h; (v) (vi) Mes-Cl, Et₃N, DCM, RT, 12h; (vii) CH₃NH₂, MeOH, 3h.

Scheme:4

Scheme:5

Reagents and Conditions: (viii) 2-nitro benzene sulfonyl chloride, Et₃N, DCM, rt, 3h; (ix) Ag₂O, CH₃I, DMF, rt, 12h; (x) Zn, HCOONH₄, MeOH, rt, 3h; (xi) CH₃COCl, Et₃N, DCM, rt, 12h.

Experimental Procedures

Methyl ((2-aminophenyl)sulfonyl)-L-prolinate 14

Compond 14 was prepared following the reported procedure¹

Tert-butyl(S)-2-((2-(((S)-2-(methoxycarbonyl)pyrrolidin-1-

yl)sulfonyl)phenyl)carbamoyl)pyrrolidine-1-carboxylate 8

To a solution of Boc-^LPro-OH (2g, 9.302mmols) in THF (50mL), Et₃N (2.6mL, 1.88g, 18.605mmol) was added followed by the addition of Ethylchloroformate (1.1mL, 1.288g, 11.944mmol). After 30 minutes, compound **14** in THF (20mL) was added and heated to reflux for 48 hours. The reaction mixture was evaporated under reduced pressure and the residue

in DCM (10mL) was washed with saturated solutions of sodium bicarbonate (7mL) followed by potassium bisulphate (7mL) and water (7mL). The washings were extracted with DCM (7mLx3), dried with anhydrous Na₂SO₄ and evaporated under reduced pressure to obtain the crude residue which was purified by column chromatography, (40:60 pet ether/ethyl acetate, R_f: 0.5) to afford **8** as a viscous liquid (3.18g, 71%). $[\alpha]^{26}$ _D: -232.87° (*c* = 1, CHCl₃); IR (CHCl₃, v (cm⁻¹): 3309, 3018, 2401, 1746, 1694, 1584, 1531, 1436, 1247; ¹H NMR (CDCl₃/200MHz): δ ppm 10.12-9.99 (d, *J*=25.52Hz, 1H), 8.55-8.66 (t, *J*=10.3, 1H), 7.86 (s, 1H), 7.52-7.59 (t, *J*=8.14Hz, 1H), 7.15-7.22 (t, *J*=7.58Hz, 1H), 4.36-4.51 (m, 2H), 3.63 (s, 3H), 3.33-3.49 (m, 4H), 1.37-1.46 (d, *J*=17.05Hz, 9H); ¹³C NMR (CDCl₃, 50MHz): δ ppm 172.1, 136.6, 134.2, 129.5, 125.2, 123.5, 80.2, 60.9, 59.9, 52.4, 48.2, 47.1, 30.8, 28.2, 24.5; MALDI-TOF-MS: 504.1741 (M+Na)⁺, 520.1484 (M+K)⁺; Elemental Analysis calculated for C₂₂H₃₁N₃O₇S: C, 54.87; H, 6.49; N, 8.73; Found: C, 59.22; H, 6.01; N, 8.99.

Tert-butyl(S)-2-((2-(((S)-2-(isobutylcarbamoyl)pyrrolidin-1yl)sulfonyl)phenyl)carbamoyl)pyrrolidine-1-carboxylate 9

Compound **8** (0.5g, 1.038mmol) was subjected to ester hydrolysis using LiOH. H₂O (0.25g, 10.382mmol) in methanol (5mL) and water (5mL) to obtain the free acid. To a solution of free acid in DCM (10mL), isobutylamine (0.21mL, 0.152g, 2.076mmols), was added followed by HBTU (0.814g, 2.076mmols), and Et₃N (0.43mL, 0.315g, 3.114mmols). After

12 hours, the reaction mixture was diluted with DCM (5mL) and the organic layer was washed with saturated solutions of sodium bicarbonate (5mL), potassium bisulphate (5mL) and water (5mL) sequentially. The organic layer was dried over anhydrous Na₂SO₄ solution and evaporated under reduced pressure to get crude product which was purified by column chromatography, (30:70 pet. ether/ethyl acetate, R_f: 0.5) to afford **9** as a white solid (0.476g, 88%). mp: 70-74°C; $[\alpha]^{26}_{D}$: -230.44° (c = 0.1, CHCl₃); IR (CHCl₃, v (cm⁻¹): 3317, 3018, 2932, 2400, 1689, 1583, 1528, 1398, 1216; ¹H NMR (CDCl₃/200MHz): δ ppm 10.16-10.28 (d, *J*=24.23, 1H), 8.6-8.75 (d, *J*=26.65, 1H), 7.78-7.82 (s, *J*=7.83Hz, 1H), 7.56-7.64 (t, *J*=7.75Hz, 1H), 7.18-7.25 (t, *J*=7.58Hz, 1H), 6.77-6.83 (m, *J*=5.12Hz, 1H), 4.36 (s, 1H), 4.15-4.19 (m, 1H), 3.49-3.57 (m, 3H), 2.96-3.20 (m, 3H), 2.16-2.18 (m, 2H), 1.66-2.03 (m, 6H), 1.42 (s, 9H), 0.89-0.93 (d, *J*=6.69Hz, 1H); ¹³C NMR (CDCl₃, 50MHz): δ ppm 171.8, 170.5, 134.7, 129.5, 123.9, 80.5, 62.6, 49.2, 46.8, 38.5, 30.3, 28.4, 24.3, 19.9; MALDI-TOF-MS: 545.2320 (M+Na)⁺, 561.2062 (M+K)⁺; Elemental Analysis calculated for C₂₅H₃₈N₄O₆S: C, 57.45; H, 7.33; N, 10.72; Found: C, 54.22; H, 7.01; N, 10.59.

Tert-butyl(S)-2-((2-(((S)-2-((4-bromophenyl)carbamoyl)pyrrolidin-1yl)sulfonyl)phenyl)carbamoyl)pyrrolidine-1-carboxylate 10

Compound **10** was synthesized following the procedure for **9** using 4-Br aniline as amine. Purified by column chromatography, (35:65 pet. ether/ethyl acetate, R_f: 0.5) colourless viscous liquid (93%). $[\alpha]^{27}_{D}$: -239.31° (c = 0.1, CHCl₃); IR (CHCl₃, v (cm⁻¹): 3425, 3020, 2400, 1682, 1583, 1530, 1370, 1215; ¹H NMR (CDCl₃/400MHz): 10.22

(s, 1H), 8.81 (s, 1H), 8.50-8.54 (d, *J*=8.46, 1H), 7.82-7.87 (dd, *J*=8.08, *J*=1.26, 1H), 7.50-7.58 (t, *J*=7.96, 1H), 7.38 (s, 4H), 7.18-7.25 (t, *J*=7.64, 1H), 4.29-4.46 (m, 2H), 3.18-3.80

(m, 5H); 2.1-2.32 (m, 3H), 1.79-2.04 (m, 4H), 1.44 (s, 9H); ¹³C NMR (CDCl₃,50MHz): δ ppm 171.3, 169.2, 136.5, 136.2, 134.6, 131.6, 129.5, 124.0, 116.9, 80.7, 62.3, 49.5, 47.3, 31.2, 30.5, 28.3, 24.3; MALDI-TOF-MS: 620.7892 (M)⁺, 643.1767 (M+Na)⁺, 659.1454 (M+K)⁺; Elemental Analysis calculated for C₂₇H₃₃BrN₄O₆S: C, 52.18; H, 5.35; N, 9.01; Found: C, 54.33; H, 5.97; N, 8.84.

(S)-*N*-(4-bromophenyl)-1-((2-((S)-1-(methylsulfonyl)pyrrolidine-2carboxamido)phenyl)sulfonyl)pyrrolidine-2-carboxamide 3

Compound **10** (0.5, 0.8052mmol) was subjected to ^tBoc deprotection using TFA (2mL) in DCM (2mL). The reaction mixture was evaporated and the residue was neutralized with NaHCO₃ solution, followed by extraction using DCM (2mL) and evaporation to yield the free amine. To a solution of free amine in DCM (5mL), Et₃N (0.34mL,

0.244g, 2.415mmols) was added followed by the addition of Mesyl chloride (0.07mL, 0.11g, 0.9662mmols). After 12 hours, reaction mixture was diluted with DCM (2mL) and the organic layer was washed with saturated sodium bicarbonate (2mL), potassium bisulphate (2mL) and water (2mL) sequentially. The organic layer was dried over anhydrous Na₂SO₄ solution and evaporated under reduced pressure to get crude product which was purified by column chromatography, (35:65 pet. ether/ethyl acetate, R_{f} : 0.5) to afford **3** as a white crystalline solid (0.46, 97%). mp: 190-192°C; $[\alpha]^{27}_{D}$: -248.81° (c = 0.1, CHCl₃); IR (CHCl₃, v (cm⁻¹): 3352, 3019, 2400, 1692, 1589, 1534, 1341, 1200; ¹H NMR (CDCl₃/400MHz): δ ppm 10.57 (s, 1H), 8.63-8.65 (d, J=7.78, 1H), 8.37 (s, 1H), 7.92-7.95 (d, J=9.29, 1H), 7.51-7.55 (m, 1H), 7.35-7.37 (d, J=8.78, 2H), 7.26-7.29 (d, J=8.78, 2H), 7.20-7.24 (m, 1H), 4.26-4.30 (m, 2H), 3.86-3.91 (m, 1H), 3.77-3.81 (m, 1H), 3.52-3.59 (m, 1H), 3.40-3.46 (m, 1H), 2.96-2.98 (s, 3H), 2.28-2.40 (m, 2H), 1.89-2.18 (m, 7H), 1.72-1.86 (m, 2H); ¹³C NMR (CDCl₃, 100MHz): δ ppm 170.0, 169.1, 136.4, 136.2, 135.3, 131.5, 130.6, 124.0, 121.8, 121.0, 117.0, 63.4, 63.0, 50.1, 48.8, 34.3, 31.8, 31.1, 24.8, 24.7; MALDI-TOF-MS: 621.0372 (M+Na)⁺, 637.0112 (M+K)⁺; Elemental Analysis calculated for C₂₃H₂₇BrN₄O₆S₂: C, 46.08; H, 4.54; N, 9.35; Found: C, 46.64; H, 4.76; N, 9.23.

(S)-*N*-isobutyl-1-((2-((S)-1-(methylsulfonyl)pyrrolidine-2carboxamido)phenyl)sulfonyl)pyrrolidine-2-carboxamide 2

Compound **2** was synthesized from compound **9**, following the synthetic procedure for compound **3**. Purified by column chromatography, (30:70 pet. ether/ethyl acetate, R_f: 0.5) to afford **2** as a white crystalline solid (98%). mp: 143-148°C; $[\alpha]^{27}_{D}$: -169.19° (*c* = 0.1, CHCl₃); IR (CHCl₃, v (cm⁻¹): 3336, 3020, 2400, 1699, 1589, 1521, 1427, 1338, 1217; ¹H NMR

(CDCl₃/200MHz): δ ppm 10.47 (s, 1H), 8.69-8.73 (d, *J*=8.46Hz, 1H), 7.88-7.93 (dd, *J*=7.96Hz, *J*=1.52Hz, 1H), 7.55-7.64 (t, *J*=8.54Hz, 1H), 7.19-7.27 (t, *J*=8.40Hz, 1H), 6.72-6.78 (t, *J*=5.75Hz, 1H), 4.25-4.35 (m, 1H), 4.09-4.15 (m, *J*=8.08Hz, *J*=3.16Hz, 1H), 3.68-3.81 (m, 1H), 3.38-3.55 (m, 2H), 3.07-3.18 (m, 4H), 2.96 (s, 2H), 2.68-2.98 (m, 2H), 2.23-2.25 (m, 3H), 1.93-2.16 (m, 4H), 1.76-1.93 (m, 2H), 1.56-1.73 (m, 1H), 1.16-1.45 (m, 6H); ¹³C NMR (CDCl₃, 50MHz): δ ppm 170.5, 170.2, 136.5, 135.1, 130.5, 124.0, 123.4, 121.2, 63.3, 62.6, 49.7, 48.5, 46.6, 45.5, 34.8, 31.7, 31.0, 28.2, 24.8, 24.5, 19.9, 8.4; MALDI-TOF-MS: 501.2457 (M+H)⁺, 523.2364 (M+Na)⁺, 539.2071 (M+K)⁺; Elemental Analysis calculated for C₂₁H₃₂N₄O₆S₂: C, 50.38; H, 6.44; N, 11.19; Found: C, 50.14; H, 6.85; N, 11.46

(S)-*N*-(4-bromophenyl)-1-((2-((S)-1-pivaloylpyrrolidine-2carboxamido)phenyl)sulfonyl)pyrrolidine-2-carboxamide 1

Compound **1** was synthesized from **10**, following the procedure for **3**, using pivaloyl chloride as acylating agent. Purified by column chromatography, (30:70 ethyl acetate/pet. ether, R_f : 0.5) white crystalline solid (93%). mp: 200-202°C; $[\alpha]^{25}_{D}$: -223.95° (c = 0.1, CHCl₃); IR (CHCl₃, ν (cm⁻¹): 3331, 3020, 2400, 1696, 1598, 1522,

1435, 1338, 1215; ¹H NMR (CDCl₃/500MHz): δ ppm 10.04 (s, 1H), 8.97 (s, 1H), 8.37-8.38 (d, *J*=7.93Hz, 1H), 7.84-7.86 (d, *J*=6.71Hz, 1H), 7.47-7.50 (t, *J*=7.32Hz, 1H), 7.34-7.40 (m, 4H), 7.17-7.20 (t, *J*=7.32Hz, 1H), 4.54-4.56 (m, 1H), 4.44-4.46 (m, 1H), 3.83-3.86 (t, *J*=7.32Hz, 2H), 3.71-3.76 (m, 1H), 3.54-3.59 (m, 1H), 2.14-2.24 (m, 3H), 2.07-2.11 (m, 1H), 1.96-2.03 (m, 2H), 1.83-1.93 (m, 1H), 1.78-1.83 (m, 1H), 1.28 (s, 9H); ¹³C NMR (CDCl₃, 125 MHz): δ ppm 178.0, 171.3, 169.1, 136.7, 134.6, 131.6, 129.9, 124.0, 122.7, 121.8, 116.9, 64.1, 61.7, 49.6, 48.7, 38.9, 30.6, 28.5, 27.2, 26.0, 24.2; MALDI-TOF-MS: 606.0644 (M+H)⁺, 629.0980 (M+Na)⁺, 645.0698 (M+K)⁺; Elemental Analysis calculated for C₂₇H₃₃BrN₄O₅S: C, 53.55; H, 5.49; N, 9.25; Found: C, 55.25; H, 5.92; N, 9.44.

Methyl ((2-(2-amino-2-methylpropanamido)phenyl)sulfonyl)-L-prolinate 15

Compound 15 was synthesized following reported procedure.²

Compound **16** was synthesized from **15**, following the procedure for **3**. Purified by column chromatography, (40:60 pet. ether/ethyl acetate, R_f: 0.5), colorless high viscous liquid (95%). $[\alpha]^{26}_{D}$: -100.61° (c = 0.1, CHCl₃); IR (CHCl₃, v (cm⁻¹): 3334, 3020, 2400, 1738, 1698, 1586, 1531, 1435, 1328, 1215; ¹H NMR (CDCl₃/400MHz): 10.27 (s, 1H), 8.57-8.62 (d, *J*=8.34, 1H), 7.55-

7.64 (dd, *J*=8.59Hz, *J*=1.39Hz, 1H), 7.19-7.23 (d, *J*=1.39Hz, 1H), 5.8 (s, 1H), 4.33-4.99 (m, 1H), 3.68 (s, 3H), 3.45-3.55 (m, 1H), 3.29-3.41 (m, 1H), 3.11 (s, 3H), 1.82-2.21 (m, 5H), 1.70-1.73 (d, *J*=5.81Hz, 6H); ¹³C NMR (CDCl₃, 50MHz): δ ppm 173.0, 172.6, 136.7, 134.5, 129.6, 124.8, 123.8, 122.1, 60.5, 60.0, 52.7, 48.7, 44.0, 30.9, 26.0, 25.6, 24.5; MALDI-TOF-MS: 448.2263 (M+H)⁺, 470.1576 (M+Na)⁺, 486.1205 (M+K)⁺; Elemental Analysis calculated for C₁₇H₂₅N₃O₇S₂: C, 45.63; H, 5.63; N, 9.39; Found: C, 45.26; H, 5.34; N, 9.57.

(S)-N-methyl-1-((2-(2-methyl-2-

(methylsulfonamido)propanamido)phenyl)sulfonyl)pyrrolidine-2-carboxamide 5

Compound **16** (0.2g, 0.4479mmol) was amidated using saturated methylamide solution in methanol (5mL). The reaction mixture was evaporated and the residue was purified by column chromatography (05:95 methanol/dichloromethane, R_f: 0.5) afforded **5** as a white crystalline solid (1.85, 92%), mp: 165-168°C; $[\alpha]^{27}_{\text{D}}$: -110.17° (*c* = 0.1, CHCl₃); IR (CHCl₃ v (cm⁻¹): 3335, 3019,

2400, 1664, 1585, 1533, 1326, 1216; ¹H NMR (CDCl₃/400MHz): δ ppm 10.31 (s, 1H), 8.58-8.60 (d, *J*=8.31Hz, 1H), 7.86-7.89 (dd, *J*=8.07Hz, *J*=1.47Hz, 1H), 7.59-7.63 (t, *J*=8.68Hz, 1H), 7.21-7.26 (t, *J*=8.19Hz, 1H), 6.71 (s, 1H), 5.88 (s, 1H), 4.09-4.12 (dd, *J*=8.80Hz, *J*=3.67Hz, 1H), 3.65-3.71 (m, 1H), 3.34-3.40 (m, 1H), 3.12 (s, 3H), 2.67-2.68 (d, *J*=4.89Hz, 1H), 2.05-2.12 (m, 1H), 1.95-2.03 (m, 1H), 1.77-1.88 (m, 3H), 1.69-1.72 (d, *J*=12.47Hz, 6H); ¹³C NMR (CDCl₃, 100MHz): δ ppm 173.0, 171.6, 137.0, 135.0, 130.2, 124.0, 122.1, 62.2, 60.4, 49.3, 44.1, 31.2, 26.2, 26.1, 25.6, 24.4; MALDI-TOF-MS: 447.1573 (M+H)⁺, 469.1438 (M+Na)⁺, 485.1076 (M+K)⁺; Elemental Analysis calculated for C₁₇H₂₆N₄O₆S₂: C, 45.73; H, 5.87; N, 12.55; Found: C, 45.49; H, 5.65; N, 12.16.

Tert-butyl(S)-2-((2-(N-(1-methoxy-2-methyl-1-oxopropan-2yl)sulfamoyl)phenyl)carbamoyl)pyrrolidine-1-carboxylate 12

Compond **12** was prepared following the reported procedure³

Methyl(S)-2-methyl-2-((2-(1-(methylsulfonyl)pyrrolidine-2carboxamido)phenyl)sulfonamido)propanoate 13

Compound **13** was synthesized from compound **12**, following the synthetic procedure for **1**. Purified by column chromatography, (30:70 pet. ether/ethyl acetate, R_f : 0.5), white solid (95%), mp: 72-74°C; $[\alpha]^{27}_{D}$: -40.94° (c = 0.1, CHCl₃); IR (CHCl₃, v (cm⁻¹): 3332, 3020, 2400, 1732, 1620, 1522, 1436, 1216; ¹H NMR

(CDCl₃/200MHz): δ ppm 10.09 (s, 1H), 8.24-8.28 (d, *J*=8.08Hz, 1H), 7.80-7.84 (d, *J*=7.96Hz,1H), 7.48-7.55 (t, *J*=7.39Hz, 1H), 7.15-7.22 (t, *J*=7.64Hz, 1H), 6.56 (s, 1H), 4.34-4.40 (m, 1H), 4.02-4.13 (m, 1H), 3.42-3.69 (m, 3H) 3.37 (s, 3H), 3.08 (s, 3H), 2.21-2.39 (m, 3H), 1.31-1.42 (s, 6H); ¹³C NMR (CDCl₃, 100 MHz): δ ppm 173.2, 170.6, 156.8, 134.3, 132.7, 131.5, 128.2, 124.0, 81.4, 61.9, 59.9, 58.0, 52.1, 47.4, 30.2, 28.3, 25.5, 25.2, 23.9; MALDI-TOF-MS: 448.1569 (M+H)⁺, 470.1021 (M+Na)⁺, 486.0770 (M+K)⁺; Elemental Analysis calculated for C₁₇H₂₅N₃O₇S₂: C, 45.63; H, 5.63; N, 9.39; Found: C, 45.42; H, 5.26; N, 9.72.

(S)-*N*-(2-(*N*-(2-methyl-1-(methylamino)-1-oxopropan-2-yl)sulfamoyl)phenyl)-1-(methylsulfonyl)pyrrolidine-2-carboxamide 4

Compound **4** was prepared, from compound **13**, following the procedure for **5**. Purified by column chromatography, (05:95 methanol/dichloromethane, R_f: 0.5) to furnish **4** as a white crystalline solid (96%). mp: 178-179°C; $[\alpha]^{26}_{D}$: -25.16° (*c* = 0.1, CHCl₃); IR (CHCl₃, v (cm⁻¹): 3341, 3020, 2401, 1652, 1585,

1469, 1438, 1343, 1216; ¹H NMR (CDCl₃/400MHz): δ ppm 10.03 (s, 1H), 8.26-8.28 (d, *J*=8.28Hz, 1H), 7.90-7.93 (dd, *J*=7.78Hz, *J*=1.25Hz,1H), 7.56-7.60 (m, 1H), 7.28-7.24 (t, *J*=7.65Hz, 1H), 6.56 (s, 1H), 7.45 (s, 1H), 4.29-4.33 (t, *J*=6.52Hz, 1H), 3.7-3.75 (m, 1H), 3.40-3.46 (m, 1H), 3.05 (s, 3H), 2.66-2.68 (d, *J*=4.77Hz, 3H), 2.37-2.42 (m, 2H), 2.02-2.09 (m, 2H), 1.29-1.32 (d, *J*=12.55Hz, 6H); ¹³C NMR (CDCl₃, 100MHz): δ ppm 173.9, 169.8, 134.3, 133.8, 130.7, 129.4, 124.7, 123.2, 62.8, 60.2, 50.0, 53.0, 35.0, 31.6, 26.5, 25.0; MALDI-TOF-MS: 447.1363 (M+H)⁺, 469.1172 (M+Na)⁺, 485.0930 (M+K)⁺; Elemental Analysis calculated for $C_{17}H_{26}N_4O_6S_2$: C, 45.73; H, 5.87; N, 12.55; Found: C, 45.48; H, 5.59; N, 12.17.

(R)-N-(4-bromophenyl)-1-(2-nitrophenylsulfonyl)pyrrolidine-2-carboxamide 18

To a solution of compound H-^DPro *p*-Br anilide (1.35g, 5.016moles) in DCM (20mL), Et₃N (2mL, 1.5g, 15moles) was added, followed by 2-nitrobenzene sulfonyl chloride (0.926g, 4.18moles) and 25% wt. of DMAP (0.030g). After 12 hours, the reaction mixture

was diluted with DCM (5mL) and the organic layer was washed with saturated solutions

of sodium bicarbonate (10mL), potassium bisulphate (10mL), water (10mL) and saturated NaCl solution (10mL). The organic layer was dried over anhydrous Na₂SO₄ solution and evaporated under reduced pressure to obtain the crude product which was purified by column chromatography, (50:50 pet. ether/ethyl acetate, R_f: 0.5) to afford **18** as a white solid (1.8g, 94%). mp: 68-72°C; $[\alpha]^{28}_{D}$: +127° (c = 0.1, CHCl₃); IR (CHCl₃, v (cm⁻¹): 3356, 3019, 2400, 1691, 1653, 1591, 1546, 1370, 1215; ¹H NMR (CDCl₃/200MHz): 8.52 (s, 1H), 8.03-8.12 (m, 1H), 7.66-7.75 (m, 2H), 7.59-7.64 (m, 1H), 7.30-7.40 (m, 4H), 4.52-4.55 (m, 1H), 3.62-3.71 (m, 2H), 2.34-2.46 (m, 1H), 2.11-2.26 (m, 1H), 1.92-2.07 (m, 2H); ¹³C NMR (CDCl₃,50MHz): δ ppm 168.8, 148.1, 136.2, 134.5, 132.0, 131.8, 131.3, 130.5, 124.2, 121.2, 117.1, 62.6, 49.6, 30.8, 24.5; MALDI-TOF-MS: 454.0768 (M+H)⁺, 476.0637 (M+Na)⁺, 492.0313 (M+K)⁺; Elemental analysis calculated for C₁₇H₁₆BrN₃O₅S: C, 44.94; H, 3.55; N, 9.25; Found: C, 44.28; H, 4.02; N, 8.66.

(R)-1-(2-aminophenylsulfonyl)-N-(4-bromophenyl)pyrrolidine-2-carboxamide 19

To a solution of compound **18** (2g, 4.402moles) in MeOH (10mL), anhydrous HCOONH₄ (2.77, 44.02moles) and activated Zn (2.87, 44.02moles), pre-treated with HCl and thoroughly washed with water and ether prior to use) were added and stirred at room

temperature for 3 hours. The reaction mixture was then filtered through celite and the filtrate was evaporated under reduced pressure. The residue obtained was dissolved in DCM (10mL) and purified by column chromatography, (65:35 pet. ether/ethyl acetate, R_f: 0.5) to afford **19** as a colorless viscous liquid (1.7, 96%). mp: 60-63°C; $[\alpha]^{27}_{D}$: +129° (c = 0.1, CHCl₃); IR (CHCl₃, v (cm⁻¹): 3486, 3384, 3019, 2400, 1687, 1590, 1519, 1341, 1306, 1215; ¹H NMR (CDCl₃/200MHz): δ ppm 8.845 (s, 1H), 7.67-7.72 (m, 1H), 7.43-7.45 (m, 4H), 7.29-7.49 (m, 1H), 6.72-6.85 (m, 2H), 5.15 (s, 2H) 4.42-4.47 (m, 1H), 3.48-3.55 (m, 2H), 2.29-2.37 (m, 1H), 1.73-2.01 (m, 3H); ¹³C NMR (CDCl₃, 50MHz): δ ppm 169.4, 146.2, 136.4, 135.1, 131.7, 130.3, 121.3, 118.2, 118.0, 117.0, 62.1, 49.6, 30.4, 24.5; MALDI-TOF-MS: 424.0486 (M+H)⁺, 446.0358 (M+Na)⁺, 462.0073 (M+K)⁺; Elemental analysis calculated for C₁₇H₁₈BrN₃O₃S: C, 48.12; H, 4.28; N, 9.90; Found: C, 47.75; H, 4.52; N, 9.68.

(R)-1-(2-acetamidophenylsulfonyl)-N-(4-bromophenyl)pyrrolidine-2-carboxamide 6

To a solution of compound **19** (0.4g, 9.427moles) in DCM (10mL), Et_3N (0.4mL, 2.86g, 28.28moles) was added followed by acetyl chloride (0.11mL, 0.1739g, 14.28moles). After 3 hours, the reaction mixture was diluted with DCM (5mL) and the organic layer was washed with saturated solutions of sodium bicarbonate

(5mL), potassium bisulphate (5mL), water (5mL) and NaCl (5mL). The organic layer was dried over anhydrous Na₂SO₄ solution and evaporated under reduced pressure to obtain the crude product which was purified by column chromatography, (30:70 pet. ether/ethyl acetate, R_f: 0.5) to afford **6** as a white crystalline solid (0.37, 81%). mp: 202-205°C; $[\alpha]^{28}_{D}$: +132.9° (*c* = 0.1, CHCl₃); IR (CHCl₃, v (cm⁻¹): 3390, 3019, 2400, 1698, 1588, 1427, 1338, 1217; ¹H NMR (CDCl₃/200MHz): δ ppm 9.54 (s, 1H), 8. 54 (s, 1H), 8.51 (s, 1H), 7.84-7.89 (m, 1H), 7.59-7.67 (m, 1H), 7.4-7.49 (m, 4H), 7.21-7.28 (m, 1H), 4.24-4.34 (m, 1H), 3.52-3.61 (m, 1H), 3.22-3.35 (m, 1H), 2.21 (s, 3H) 1.75-2.00 (m, 4H); ¹³C NMR (CDCl₃, 50MHz): δ ppm 168.8, 137.0, 136.2, 135.1, 131.9, 129.9, 124.7, 124.4, 123.3, 123.2, 121.4, 117.3, 62.5, 49.9, 30.5, 25.0, 24.5; MALDI-TOF-MS: 446.1022 (M+H)⁺, 488.0991 , 504.0633 (M+K)⁺; Elemental analysis calculated for C₁₉H₂₀BrN₃O₄S: C, 48.93; H, 4.32; N, 9.01; Found: C, 48.35; H, 4.56; N, 8.86

Methyl 2-methyl-2-(2-nitrophenylsulfonamido)propanoate 21

Compound **21** was synthesized following the reported procedure.¹

Methyl 2-methyl-2-((N-methyl-2-nitrophenyl)sulfonamido)propanoate 22

To a solution of compound **21** (0.5g, 1.656 moles) in DMF (5mL), Ag_2O (0.7676g, 3.3112moles) was added followed by methyl iodide (0.2mL, 0.470g, 3.3112moles). After 3 hours, the reaction mixture was diluted with ethyl acetate

(5mL) and the organic layer was washed with water (5mL) and brine (5mL). The organic layer was dried over anhydrous Na₂SO₄ solution and evaporated under reduced pressure

to obtain the crude product which was purified by column chromatography, (30:70 pet. ether/ethyl acetate, R_f : 0.5) to afford **22** as a white crystalline solid (0.42, 80%). mp: 101-103°C; IR (CHCl₃, v (cm⁻¹): 3404, 3021, 2400, 1740, 1546, 1437, 1372, 1216; ¹H NMR (CDCl₃/200MHz): 8.19-8.24 (m, 1H), 7.63-7.73 (m, 3H), 3.72 (s, 3H), 2.93 (s, 3H), 1.56 (s, 6H); ¹³C NMR (CDCl₃, 50MHz): δ ppm 170.4, 147.7, 133.5, 132.3, 131.4, 130.7, 123.8, 64.7, 51.5, 30.6, 27.8; MALDI-TOF-MS: 317.1046 (M+H)⁺, 339.1021 (M+Na)⁺, 355.0847 (M+K)⁺; Elemental analysis calculated for C₁₂H₁₆N₂O₆S: C, 45.56; H, 5.10; N, 8.86; Found: C, 46.29; H, 4.92; N, 8.96.

Methyl 2-((2-amino-N-methylphenyl)sulfonamido)-2-methylpropanoate 23 Compound 23 was synthesized following the procedure for 19

Purified by column chromatography, (70:30 pet. ether/ethyl acetate, R_f : 0.5), white crystalline solid (97%). mp: 114-116°C; IR (CHCl₃, v (cm⁻¹): 3486, 3380, 3235, 3020, 2400, 1735, 1637, 1485, 1454, 1216; ¹H NMR (CDCl₃/200MHz): δ ppm 7.73-7.77 (m, 1H),

7.25-7.33 (m, 1H), 6.65-6.74 (m, 2H), 5.30 (s, 2H), 3.82 (s, 3H), 2.63 (s, 3H) 1.56 (s, 6H); 13 C NMR (CDCl₃, 50 MHz): δ ppm 157.7, 146.4, 134.5, 131.2, 118.1, 117.4, 116.3, 62.3, 52.7, 30.2, 24.1; LC-MS: 308.86 (M+Na)⁺; Elemental analysis calculated for C₁₂H₁₈N₂O₄S: C, 50.33; H, 6.34; N, 9.78; Found: C, 49.87; H, 5.95; N, 9.92.

Methyl 2-((2-acetamido-N-methylphenyl)sulfonamido)-2-methylpropanoate 7

Compound 7 was prepared following the procedure for 6, using acetyl chloride was used as the acetylating agent. Purified by column chromatography, (70:30 pet. ether/ethyl acetate, R_f : 0.5) to furnish 7 as a white solid (96%), crystallized from methanol. mp: 92-94°C; IR (CHCl₃, v (cm⁻¹): 3334, 3019, 2401,

1737, 1699, 1583, 1529, 1468, 1436, 1322, 1216; ¹H NMR (CDCl₃/200MHz): δ ppm 9.55 (s, 1H), 8.56-8.61 (d, *J*=8.34Hz, 1H), 7.95-7.99 (dd, *J*=8.02Hz, *J*=1.45Hz, 1H), 7.52-7.61 (m, 1H), 7.13-7.21 (m, 1H), 3.83 (s, 3H), 2.62 (s, 3H), 2.33 (s, 3H), 1.56 (s, 6H); ¹³C NMR (CDCl₃, 50MHz): δ ppm 175.6, 169.6, 137.3, 134.5, 130.8, 124.6, 122.9, 62.9, 53.0, 30.5, 24.8, 24.1; LC-MS: 339.06 (M+Na)⁺; Elemental analysis calculated for C₁₄H₂₀N₂O₅S: C, 51.21; H, 6.14; N, 8.53; Found: C, 50.83; H, 5.82; N, 8.26.

10 9 8 7 6 5 4 3 2 1 Chemical Shift (ppm)

1 10 9 8 7 6 5 4 3 2 1 Chemical Shift (ppm)

Chemical Shift (ppm)

VO2-S-D-Pro-NHB MOn5 المربع المربع

SDBP Mon2av2#006 Acetyl S-Ant Der o 4-Br anilide.001.001.1r.esp

12-S-D-Pro-NHB Fri5av2#024 2-nitro benzenesulfonyl D-pro 4-Br anilide.001.001.1r.esp

S34

S35

vH2-S-NMe-A-OMe Sat1av2#041 2-amino benzene sulfonyl N-methyl AIB methyl ester.

TOF/TOF™ Reflector Spec #1[BP = 623.0, 1359]

TOF/TOF™ Reflector Spec #1[BP= 379.1,5774]

999.2

MALDI-TOF MS

501.2457

 $(M+H)^+$

TOF/TOF™ Reflector Spec #1[BP = 448.0, 1707]

TOF/TOF™ Reflector Spec #1[BP = 379.2, 15479]

Figure 1: COSY Spectrum of 3 (500MHz, CDCl₃).

Figure 2: Molecular Structure of compound 3.

Figure 3: Partial COSY Spectrum of **3** (500MHz, CDCl₃); (a) aromatic and (b) aliphatic regions.

Figure 4: TOCSY Spectrum of 3 (500MHz, CDCl₃).

Figure 5: Partial TOCSY Spectrum of **3** (500MHz, CDCl₃); (a) aromatic and (b) aliphatic regions.

Figure 6: NOESY Spectrum of 3 (500MHz, CDCl₃).

Figure 7: Pymol rendered crystal structures of **3**; (a) with numbering and (b) with NOE interactions.

Figure 8: Partial 2D NOESY Extracts of 3 (500MHz, CDCl₃).

Figure 10: Molecular Structure of compound 1.

Figure 11: Partial COSY Spectrum of **1** (500MHz, CDCl₃); (a) aromatic and (b) aliphatic regions.

Figure 12: NOESY Spectrum of 1 (500MHz, CDCl₃).

Figure 13: Pymol rendered crystal structures of **1**; (a) with numbering and (b) with NOE interactions.

Figure 14: Partial 2D NOESY Extracts of 1 (500MHz, CDCl₃).

Figure 15: COSY Spectrum of 5 (500MHz, CDCl₃).

Figure 16: Molecular Structure of compound 5.

Figure 17: Partial COSY Spectrum of **5** (500MHz, CDCl₃); (a) aromatic and (b) aliphatic regions.

Figure 18: NOESY Spectrum of 5 (500MHz, CDCl₃).

Figure 19: Partial 2D NOESY Extracts of **5** (500MHz, CDCl₃). Pymol rendered crystal structures of **5**; (a) with numbering and (b) with NOE interactions.

Figure 20: COSY Spectrum of 4 (500MHz, CDCl₃).

Figure 21: Molecular Structure of compound 4.

S57

Figure 22: Partial COSY Spectrum of **4** (500MHz, CDCl₃); (a) aromatic and (b) aliphatic regions.

Figure 23: NOESY Spectrum of 4 (500MHz, CDCl₃).

Figure 24: Partial 2D NOESY Extracts of 4 (500MHz, CDCl₃).

Figure 25: Pymol rendered crystal structures of **4**; (a) with numbering and (b) with NOE interactions.

Table S1. DMSO-d6 titration plots of compound 3 (5 mmol, 400 MHz, CDCl₃).

Volume of DMSO-d6 added (µL)	Chemical shift in (ppm) NH1 NH2			
0	10.59	8 35		
5	10.59	8.36		
10	10.57	8.37		
15	10.56	8.38		
20	10.55	8.39		
25	10.55	8.40		
30	10.54	8.41		
35	10.53	8.42		
40	10.52	8.44		
45	10.52	8.46		
50	10.51	8.48		

Major Inferences:-

(a) δNH1 = 0.08 ppm (b) δNH2 = 0.13ppm

Table S2. DMSO-d6 titration plots of compound 1 (5 mmol, 400 MHz, CDCl₃).

Volume of DMSO-d6 added (µL)	Chemical shift in (ppm)NH1NH2			
0	10.04	8.96		
5	10.03	9.00		
10	10.02	9.03		
15	10.01	9.08		
20	10.01	9.09		
25	10.0	9.14		
30	9.99	9.17		
35	9.98	9.21		
40	9.98	9.23		
45	9.98	9.25		
50	9.96	9.29		

Major Inferences:-

(a) δNH1 = 0.08 ppm (b) δNH2 = 0.33ppm

Table S3. DMSO-d6 titration plots of compound 5 (5 mmol, 400 MHz, CDCl₃).

Volume of DMSO-d6	Chemical shift in (ppm)			
added (µL)	NH3	NH2	NH1	
0	6.65	10.31	5.57	
5	6.71	10.31	6.02	
10	6.81	10.32	6.60	
15	6.85	10.29	6.97	
20	6.85	10.28	7.07	
25	6.86	10.27	7.12	
30	6.87	10.26	7.21	
35	6.87	10.24	7.31	
40	6.87	10.23	7.35	
45	6.88	10.22	7.39	
50	6.88	10.21	7.40	

Major Inferences:-

(a) δNH1 = 0.83 ppm
(b) δNH2 = 0.10ppm
(c) δNH3 = 0.23ppm

Table S4. DMSO-d6 titration plots of compound 4 (5 mmol, 400 MHz, CDCl₃).

Volume of DMSO-d6	Chemi	cal shift in	t in (ppm)		
added (µL)	INH2	NHI	NHS		
0	6.58	10.04	6.46		
5	6.58	10.04	6.47		
10	6.60	10.04	6.48		
15	6.62	10.05	6.51		
20	6.63	10.04	6.52		
25	6.65	10.06	6.55		
30	6.65	10.06	6.56		
35	6.68	10.06	6.59		
40	6.68	10.06	6.59		
45	6.71	10.07	6.63		
50	6.72	10.07	6.64		

Major Inferences:-

(a)	δNH1 = 0.03 ppm
(b)	δNH2 = 0.14ppm
(c)	δNH3 = 0.18ppm

Table S5. Temperature Variation Study of Compound 3 (5 mmol, 400 MHz, CDCl₃).

Temperature (K)	Chemical shift in (ppm)			
	NH1	NH2		
268	10.65	8.39		
273	10.64	8.38		
278	10.63	8.38		
283	10.62	8.37		
288	10.61	8.37		
293	10.60	8.36		
298	10.59	8.35		
303	10.58	8.34		
308	10.57	8.34		
313	10.56	8.33		
318	10.55	8.33		
323	10.54	8.32		

Major Inferences upon varying the temperature from 268-323K:-

(a) $\delta NH1 = 0.11 ppm; \Delta \delta \Delta T = -2 ppbK^{-1}$ (b) $\delta NH2 = 0.07 ppm; \Delta \delta \Delta T = -1.27 ppbK^{-1}$

Table S6. Temperature Variation Study of Compound 1 (5 mmol, 400 MHz, CDCl₃).

Temperature (K)	Chemical shift in (ppm)				
	NH1	NH2			
268	10.08	9.08			
273	10.07	9.07			
278	10.06	9.02			
283	10.06	9.02			
288	10.06	9.00			
293	10.05	8.98			
298	10.04	8.96			
303	10.04	8.93			
308	10.03	8.92			
313	10.02	8.90			
318	10.02	8.87			
323	10.01	8.85			

Major Inferences upon varying the temperature from 268-323K:-

(a) $\delta NH1 = 0.07 \text{ ppm}; \Delta \delta / \Delta T = -1.27 \text{ ppbK}^{-1}$
(b) $\delta NH2 = 0.23 \text{ ppm}; \Delta \delta \Delta T = -4.18 \text{ ppbK}^{-1}$

Table S7. Temperature Variation Study of Compound 4 (5 mmol, 400 MHz, CDCl₃).

Temperature (K)	Chemical shift in (ppm)				
	NH2	NH1	NH3		
268	6.72	10.05	6.57		
273	6.68	10.05	6.55		
278	6.66	10.05	6.53		
283	6.64	10.05	6.51		
288	6.61	10.04	6.49		
293	6.59	10.04	6.47		
298	6.58	10.04	6.46		
303	6.57	10.04	6.45		
308	6.56	10.04	6.44		
313	6.55	10.04	6.43		
318	6.54	10.03	6.42		
323	6.53	10.03	6.40		

Major Inferences upon varying the temperature from 268-323K:-

(a) δNH1 = 0.02 ppm; Δδ/ΔT = -0.36 ppbK⁻¹
(b) δNH2 = 0.19 ppm; Δδ/ΔT = -3.45 ppbK⁻¹

(c) $\delta NH3 = 0.17 \text{ ppm}; \Delta \delta \Delta T = -3.09 \text{ ppbK}^{-1}$

Table S8. Temperature Variation Study of Compound 5 (5 mmol, 400 MHz, CDCl₃).

Temperature (K)	Chemical shift in (ppm)				
	NH3	NH2	NH1		
268	6.76	10.35	5.75		
273	6.76	10.34	5.72		
278	6.73	10.33	5.68		
283	6.71	10.33	5.64		
288	6.68	10.32	5.60		
293	6.66	10.31	5.57		
298	6.63	10.31	5.54		
303	6.62	10.30	5.52		
308	6.60	10.29	5.50		
313	6.58	10.29	5.47		
318	6.57	10.28	5.45		
323	6.55 10.28 5.42				

Major Inferences upon varying the temperature from 268-323K:-

(a) $\delta NH1 = 0.33$ ppm; $\Delta \delta / \Delta T = -6$ ppbK⁻¹ (b) $\delta NH2 = 0.07$ ppm; $\Delta \delta / \Delta T = -1.27$ ppbK⁻¹

(c) $\delta NH3 = 0.21 \text{ ppm}; \Delta \delta / \Delta T = -3.82 \text{ ppbK}^{-1}$

Crystal Data⁴

Compound 1: Single crystals of **1** were grown by slow evaporation of the solution mixture of ethyl acetate and pet. ether. Colorless block crystal of size 0.49 x 0.42 x 0.31 mm³, was used for data collection, Temperature = 296(2) K, Wave length = 0.71073 Å Quadrant data acquisition, F(000) = 1256, θ range = 1.76° to 28.29°, completeness to θ is 100 %, Goodness-of-fit on F2 = 1.067, C₂₇H₃₃BrN₄O₅S, M = 605.54. Crystals belong to Orthorhombic, space group P212121, a = 6.7186(2), b = 15.8096(5), c = 26.5176(7) Å, $\alpha = \beta = \gamma = 90^{\circ}$, V = 2816.66(14) Å³, Z = 4, Dc = 1.428 g/cc, μ (Mo–K α) = 1.577 mm-1, 6952 total reflections, 4854 unique reflections, R value 0.0698, wR2 = 0.1124.

Compound 2: Single crystals of **2** were grown by slow evaporation of the solution mixture of ethylacetate and pet.ether. Colorless needle crystal of size 0.64 x 0.19 x 0.13 mm³, was used for data collection, Temperature = 297(2)K, Wave length = 0.71073 Å Quadrant data acquisition, Total scans = 4, F(000) = 1064, θ range = 2.19° to 25.49°, completeness to θ of 24.99 ° is 100 %, Goodness-of-fit on F2 = 1.018, C₂₁H₃₂N₄O₆S₂, M = 500.63. Crystals belong to Monoclinic, space group C2, a = 18.6244(11), b = 8.4267(4), c = 16.0611(8) Å, $\alpha = 90$, $\beta = 93.118(5)$, $\gamma = 90$, 2516.9(2) Å3, Z = 4, Dc = 1.321 g/cc, μ (Mo–Ka) = 0.254 mm-1, 4429 total reflections, 4052 unique [I>2s(I)], R value 0.0430, wR2 = 0.1171.

Compound 3: Single crystals of **3** were grown by slow evaporation of the solution mixture of ethylacetate and pet.ether. Colorless needle crystal of size 0.65 x 0.33 x 0.29 mm³, was used for data collection, Temperature = 296(2)K, Wave length = 0.71073 Å Quadrant data acquisition, F(000) = 616, θ range = 2.36° to 30.42°, completeness to θ is 95 %, Goodness-of-fit on F2 = 0.993, C₂₃H₂₇BrN₄O₆S₂, M = 599.53. Crystals belong to Monoclinic, space group P21, a = 8.1060(12) , b = 10.5928(16), c = 14.983(2) Å, α = 90, β = 96.273(8), γ = 90, V = 1278.8(3) Å³, Z = 2, Dc = 1.557 g/cc, μ (Mo–K α) = 1.817 mm-1, 7389 total reflections, 5331 unique reflections, R value 0.0355, wR2 = 0.0875.

Compound 4: Single crystals of **4** were grown by slow evaporation of the solution mixture of ethylacetate and pet.ether. Colorless block crystal of size $0.50 \times 0.45 \times 0.35$ mm³, was used for data collection, Temperature = 296(2)K, Wave length = 0.71073 Å

Quadrant data acquisition, F(000) = 944, θ range = 2.53 ° to 28.10°, completeness to θ is 100 %, Goodness-of-fit on F2 = 1.082, $C_{17}H_{26}N_4O_6S_2$, M = 446.54. Crystals belong to Orthorhombic, space group P212121, a = 9.5896(2), b = 14.7665(3), c = 14.7848(3) Å, $\alpha = \beta = \gamma = 90^{\circ}$, V = 2093.60(19) Å³, Z = 4, Dc = 1.417 g/cc, μ (Mo–K α) = 0.296 mm-1, 2902 total reflections, 2703 unique reflections, R value 0.0346, wR2 = 0.0908.

Compound 5: Single crystals of **5** were grown by slow evaporation of the solution mixture of ethylacetate and pet.ether. Colorless plate crystal of size 0.47 x 0.31 x 0.05 mm³, was used for data collection, Temperature = 297(2)K, Wave length = 0.71073 Å Quadrant data acquisition, F(000) = 472, θ range = 1.65° to 30°, completeness to θ is 87 %, Goodness-of-fit on F2 = 1.027, $C_{17}H_{26}N_4O_6S_2$, M = 446.54. Crystals belong to Monoclinic, space group P21, a = 7.7425(4), b = 10.0108(6), c = 13.8284(8) Å, $\alpha = 90$, β = 102.033(3), $\gamma = 90$, V = 1048.27(10) Å³, Z = 2, Dc = 1.415 g/cc, μ (Mo–K α) = 0.296 mm-1, 5303 total reflections, 4805 unique reflections, R value 0.0317, wR2 = 0.0819.

Compound 6: Single crystals of **6** were grown by slow evaporation of the solution mixture of Dichloromethane and methanol. Colorless needle type crystal of approximate size 0.45 x 0.23 x 0.19 mm³, was used for data collection, Temperature = 296(2) K, Wave length = 0.71073 Å, Quadrant data acquisition, Total scans = 4, F(000) = 952, θ range = 2.56° to 28.31°, Goodness-of-fit on F² = 0.988, C₁₉H₂₀BrN₃O₄S, M = 466.35. Crystals belong to Orthorhombic, space group P212121, a = 9.2942(10) Å, b = 13.9119(13) Å, c = 15.3096(17) Å, $\alpha = \beta = \gamma = 90^{\circ}$, V = 1979.5 (4) Å³, Z = 4, Dc = 1.565 g/cc, μ (Mo–K α) = 0.71073 mm-1, total reflections = 4865, 3065 unique reflections, R value 0.0432, wR₂ = 0.0926.

Compound 7: Single crystals of 7 were grown by slow evaporation of the solution of methanol. Colorless block crystal of approximate size 0.66 x 0.27 x 0.14 mm³, was used for data collection, Temperature = 297(2) K, Wave length = 0.227 Å, Quadrant data acquisition, F(000) = 348, θ range = 2.69 to 28°, completeness to θ of 28° is 99.3 %, Goodness-of-fit on F² = 1.059, C₁₄H₂₀N₂O₅S, M = 328.38. Crystals belong to Triclinic, space group P1, a = 7.1146(3) Å, b = 8.0387(3) Å, c = 15.0865(6) Å, α = 90.323(2), β = 100.054(2), γ = 109.252(2), V = 800.21(6) Å³, Z = 2, Dc = 1.363 g/cc, μ (Mo–K α) =

0.227 mm-1, 3852 reflections collected, 3360 unique [I> 2σ (I)], R value 0.0386, wR₂ = 0.1169.

	Torsion angle Parameters								
Comp.	Xa	a		^s Ant		Yaa		CSNC dihedral	
No							angle		
	φ	ψ	φ	θ	ψ	φ	ψ	ω1	ω2
1	-67.00	146.81	-127.75	8.19	-66.93	-112.56	168.11	155.17	-
2	-86.86	-31.16	-178.38	-1.01	-71.75	-104.28	-19.44	-68.72	66.55
3	-118.80	11.82	167.80	1.25	-69.47	-95.56	-34.47	-58.74	58.78
4	-107.89	6.11	-145.57	-0.51	69.16	-73.91	120.54	-74.22	61.71
5	-67.21	-45.70	166.28	-9.41	-91.78	-116.43	-10.20	-88.43	-74.75
6	-	-	-158.56	-0.69	61.57	86.66	-163.12	-163.29	-
7	-	-	148.56	6.17	-68.56	-72.75	147.82	155.86	-

Table S9: Torsion angle parameters

Table S10: Intra-molecular hydrogen-bonding parameters

	Torsion angle Parameters									
Comp.	Type of	Atoms involved	Distances (Å)		Angles (degree)			Torsion (
No	H-									
	bonding		(NH···O)	(N···O)	$(NH \cdots O)$	$(AO \cdots H)$	$(AO \cdots N)$	(AO···NH)		
1	C-9	$N(2)H(2N)\cdots O(5)$	2.216	3.041	160.84	114.46	113.15	76.90		
	C-6	$N(2)H(2N)\cdots O(3)$	2.994	2.964	79.74	75.47	79.78	103.21		
2	C-14	$N(4)H(4N)\cdots O(6)$	2.478	3.110	134.09	120.93	131.40	163.29		
	C-6	$N(2)H(2N)\cdots O(2)$	2.231	2.844	137.57	88.61	83.87	-62.85		
3	C-14	$N(4)H(4N)\cdots O(6)$	2.436	3.226	152.87	137.40	140.69	-121.60		
	C-6	$N(2)H(2N)\cdots O(2)$	2.303	2.891	125.67	84.68	82.00	-78.19		
4	C-11	$N(3)H(3N)\cdots O(6)$	2.292	3.070	150.62	126.63	126.62	-92.91		
	C-6	$N(2)H(2N)\cdots O(2)S2$	2.221	2.855	137.22	93.60	83.66	-23.93		
	C-7	$N(2)H(2N)\cdots O(2)S1$	3.030	3.462	116.87	79.84	87.19	-127.91		
5	C-6	$N(1)H(1N)\cdots O(2)$	2.072	2.717	141.32	102.17	92.23	-13.38		
6	C-9	$N(1)H(1N)\cdots O(4)$	2.21	3.025	158.06	120.18	125.96	-161.98		
	C-6	$N(1)H(1N)\cdots O(2)$	2.67	3.095	77.34	77.07	79.90	-87.28		
7	C-9	$N(2)H(2N)\cdots O(5)$	2.132	2.929	158.17	119.51	122.51	71.03		
	C-6	$N(2)H(2N)\cdots O(3)$	2.741	3.061	104.41	79.62	79.75	89.06		

A = S (sulphur) or C (carbon)

Table S11: Inter-molecular interactions

Co.	Type of	Atoms involved	Distances (Å)		Angles	Torsion (degree)
No	interactions				(degree)	
			$(DH \cdots A)$	$(D \cdots A)$	$(DH \cdots A)$	(AO…DH)
1	CH···O	$C(5)H(5A)\cdots O(1)$	2.664	3.369	129.82	62.02

	CH···O	$C(13)H(13)\cdots O(2)$	2.648	3.260	120.73	-139.55
	NH···O	$N(4)H(4)\cdots O(2)$	1.952	2.810	174.33	-162.45
	CH···O	$C(16)H(16A)\cdots O(3)$	2.542	3.231	127.90	88.84
2	CH···O	$C(2)H(2B)\cdots O(4)$	2.505	3.269	136.18	133.73
	CH···O	$C(21)H(21B)\cdots O(4)$	2.702	3.280	119.18	159.62
	СН⋯О	$C(13)H(13B)\cdots O(1)$	2.499	3.457	169.53	-143.68
	CH···O	$C(10)H(10)\cdots O(2)$	2.416	3.300	159.73	-54.28
	СН⋯О	$C(9)H(9)\cdots O(3)$	2.622	3.324	132.80	-170.90
3	CH···O	$C(24)H(224C)\cdots O(1)$	2.302	3.212	158.00	-98.14
	СН⋯О	$C(24)H(24A)\cdots O(5)$	2.660	3.614	172.91	-148.73
	СН⋯О	$C(1)H(1A)\cdots O(5)$	2.606	3.499	151.67	24.10
	СН⋯О	$C(10)H(10)\cdots O(3)$	2.476	3.332	153.26	67.01
	Br…O	$Br(1)\cdots O(3)$	-	3.236	-	-179.31
	СН⋯О	$C(14)H(14B)\cdots O(4)$	2.710	3.514	140.70	-171.54
4	СН…О	$C(17)H(17A)\cdots O(1)$	2.577	3.495	159.90	29.57
	СН…О	$C(17)H(17B)\cdots O(3)$	2.367	3.302	164.56	60.17
	СН…О	$C(4)H(4B)\cdots O(2)$	2.645	3.435	138.78	9.59
	CH···O	$C(10)H(10)\cdots O(2)$	2.713	3.487	141.27	-14.88
	NH···O	$N(4)H(4N)\cdots O(4)$	2.173	2.903	140.31	98.60
	СН⋯О	$C(16)H(16B)\cdots O(4)$	2.608	3.200	120.17	-140.46
5	CH···O	$C(17)H(17C)\cdots O(1)$	2.604	3.395	139.86	32.14
	СН…О	$C(14)H(14B)\cdots O(5)$	2.520	3.242	131.20	-58.02
	CH···O	$C(13)H(13B)\cdots O(5)$	2.651	3.315	126.00	168.55
	СН…О	$C(3)H(3C)\cdots O(6)$	2.526	3.318	139.94	-79.83
	NH···O	$N(4)H(4N)\cdots O(4)$	2.065	2.954	169.76	175.71
	СН…О	$C(7)H(7)\cdots O(2)$	2.549	3.390	148.78	88.90
	СН⋯О	$C(14)H(14)\cdots O(3)$	2.523	3.390	148.78	88.90
6	CH···O	$C(19)H(19A)\cdots O(3)$	2.538	3.435	155.67	127.96
	СН⋯О	$C(9)H(9A)\cdots O(1)$	2.581	3.268	127.89	179.04
	CH···O	$C(8)H(8)\cdots O(1)$	2.518	3.163	119.92	97.74
	NH···O	$N(3)H(3N)\cdots O(1)$	2.189	3.010	159.45	-114.93
	CH···O	$C(5)H(5)\cdots O(2)$	2.599	3.460	154.04	116.74
	CH···O	$C(14)H(14)\cdots O(3)$	2.588	3.292	132.81	39.70
7	CH···O	$C(6)H(\overline{6})\cdots O(1)$	2.479	3.259	138.71	-139.21
	CH···O	$C(11)H(11C)\cdots O(2)$	2.611	3.526	159.22	-143.15
	CH···O	$C(13)H(13C)\cdots O(2)$	2.612	3.517	168.29	23.96
	CH···O	$C(8)H(8C)\cdots O(1)$	2.709	3.635	159.92	167.22
	CH···O	$C(5)H(5)\cdots O(2)$	2.599	3.460	154.04	116.74

A = S (sulphur) or C (carbon) D = N (nitrogen) or C (carbon)

Crystal Structure of 7

References

(1) K. N. Vijayadas, H. C. Davis, A. S. Kotmale, R. L. Gawade, V. G. Puranik, P. R. Rajamohanan and G. J. Sanjayan, *Chem. Commun.*, 2012, **48**, 9747-9749.

(2) A. Roy, A. S. Kotmale, R. L. Gawade, V. G. Puranik, P. R. Rajamohanan, G. J. Sanjayan, *RSC Adv.* 2014, **4**, 13018-13025

(3) V. V. E. Ramesh, S. S. Kale, A. S. Kotmale, R. L. Gawade, V. G. Puranik, P. R. Rajamohanan and G. J. Sanjayan, *Org. Lett.*, 2013, **15**, 1504–1507.

(4) Crystal structure was solved by direct method and refined by full matrix least squares on F2 for all data using SHELXTL software (SHELX-97)⁵. The hydrogen atom of hydroxy group was located on the difference map and refined isotropically. Other hydrogen atoms were refined in the riding mode. Crystallographic data of **1-7** have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC 1027031-1027037 respectively. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK.

(5) G. M. Sheldrick, SHELX-97 program for crystal structure solution and refinement, University of Gottingen, Germany, 1997.