Supporting Information

First Water-Soluble Bowl Complex: Molecular Recognition of Acetate by the Biomimetic Tris(imidazole) Zn(II) System at pH 7.4

Stéphanie Rat‡, Jérôme Gout‡, Olivia Bistri‡ and Olivia Reinaud*

Laboratoire de Chimie et de Biochimie pharmacologiques et toxicologiques, Université Paris Descartes, CNRS UMR 8601, 45 rue des Saints Pères, 75006 Paris, France.

Table of contents

General experimental methods S2
Experimental procedures S3
Estimation of the imidazole pKa values S17
pD range for WRim3Zn complex detection S17
Optimal pD determination S18
K' determination at various pD S19
Full pictures of 1H NMR spectra cited in the article S21
General experimental methods. All solvents and reagents were obtained commercially. THF and CH₂Cl₂ were freshly distilled under Argon over sodium/benzophenone and CaH₂, respectively. Anhydrous “extra-dry” DMF and DMA (H₂O < 30 ppm, Acros) were used as received and kept over molecular sieves under Argon. The one- and two-dimensional ¹H and ¹³C NMR spectra were recorded with a Bruker ARX250 MHz spectrometer and Advance 500 spectrometer (500 MHz). The ¹H and ¹³C chemical shifts (δ) were referred to SiMe₄. Standard HSQC and HMBC experiments were used for peak assignments. MS (ESI) analyses were obtained with a ThermoFinnigen LCQ Advantage spectrometer using methanol, dichloromethane or acetonitrile as solvents. HRMS (ESI) analyses were obtained with a Spectrometer (LC) ESI/TOF (LCT, Waters) and with a Spectrometer ES/Orbitrap (Exactive, ThermoScientific). IR spectra were obtained with a Perkin-Elmer Spectrum on FTIR spectrometer equipped with a MIRacleTM single reflection horizontal ATR unit (germanium crystal). Elemental analyses were performed at the Institut de Chimie des Substances Naturelles (France). For this purpose, the products were dried for at least one night under vacuum at 60-70°C. The pH values of the solutions were corrected considering pH = pH_{read} + 0.4 at 25°C.
Experimental procedures

Methylene bridged cavitand 1 was obtained by following ref: Gibb, B. C.; Chapman, R. G.; Sherman, J. C. J. Org. Chem. 1996, 61, 1505-1509.

Tetrabromocavitand (R= (CH$_2$)$_3$OTIPS) (2)

Tetrabromocavitand 1 (1.0 g, 0.923 mmol) was dissolved in anhydrous DMF (10 ml) under argon. Imidazole (0.954 g, 14.0 mmol) was added to the solution. After 10 min, triisopropylsilyl chloride (2.69 mL, 12.6 mmol) was added and the solution was stirred at room temperature for 24 h. DMF was removed under reduced pressure. The residue was dissolved in CH$_2$Cl$_2$ (20 ml) and washed with water (3x5 mL). The organic layer was dried over MgSO$_4$, filtered and concentrated. The crude was purified by flash column chromatography (SiO$_2$, CH$_2$Cl$_2$/cyclohexane 1:3 then 2:3) to yield silylated product 2 as a white foam (1.30 g, 82%).

1H NMR (500 MHz, CDCl$_3$, 300 K) δ (ppm): 7.06 (m, 4H, Ar-H down), 5.96 (d, J = 7.4 Hz, 4H, -O-CH$_2$out-O-), 4.89 (t, J = 8.0 Hz, 4H, CH$_2$-CH$_2$), 4.40 (d, J = 7.4 Hz, 2H, -O-CH$_2$in-O-), 3.77 (t, J = 6.0 Hz, 8H, CH$_2$-OTIPS), 2.36-2.21 (m, 8H, CH$_2$-CH$_2$ -CH$_2$), 1.67-1.55 (CH$_2$, m, 8H), 1.09 (s, 72H, Si(CH$_3$)$_2$); 1.08 (s, 12H, SiCH); 13C NMR (125 MHz, CDCl$_3$, 300 K) δ (ppm): 152.3, 139.3, 119.2, 113.7, 98.6, 62.8, 37.3, 30.9, 27.1, 26.2, 18.2, 12.2; IR (ATR): ν = 2942, 2854, 1464, 1449, 1414, 1382, 1315, 1261, 1231, 1177, 1105, 1086, 1021, 1011, 964, 888, 789, 727 cm$^{-1}$; Anal. Calcd for C$_{80}$H$_{124}$Br$_4$O$_{12}$Si$_4$·H$_2$O : C, 55.61; H, 7.35; found: C, 55.63; H, 7.32.
Figure S1. 1H NMR (500 MHz) spectrum of 2 recorded at 300 K in CDCl$_3$.

Figure S2. 13C NMR (125 MHz) spectrum of 2 recorded at 300 K in CDCl$_3$.

Tribromocavitand (3)
To the tetrabromocavitand 2 (3.2 g, 1.9 mmol) was added freshly distilled dry THF (10 mL) under argon and the solution was evaporated to dryness and then heated to 80°C at 0.1 mmHg over 1h. Repeating this process twice gave a material sufficiently dried for the selective
reductive debromination reaction. After dissolution in freshly distilled anhydrous THF (90 mL),
the reaction mixture was cooled to -78°C, and freshly titrated n-butyllithium (1.28 ml of a 1.6
M solution in hexanes, 2.0 mmol) was added. After 15 min, methanol (2.0 mL) was added, and
the mixture was allowed to warm to room temperature. Solvent evaporation gave a residue
which was dissolved in CH₂Cl₂, washed with water, then saturated brine and dried over
anhydrous MgSO₄. The organic layer was filtered and the solvent was evaporated under
vacuum. Purification by flash column chromatography on silica gel (60 g of SiO₂,
cyclohexane/CH₂Cl₂ from 3:2 to 2:3) gave compound 3 as white foam (2.5 g, 81 %). ¹H NMR
(500 MHz, CDCl₃, 300 K) δ (ppm): 7.11 (s, 1H, Ar-H down), 7.08 (s, 3H, Ar-H down), 6.55 (s,
1H, Ar-H up), 5.96 (d, J = 7.3 Hz, 2H, -O-CH₂,CH₂-O-), 5.86 (d, J = 7.3 Hz, 2H, -O-CH₂,CH₂-O-),
4.90 (t, J = 8.25 Hz, CH₂-CH₂, 2H), 4.84 (t, J = 8.25 Hz, CH₂-CH₂, 2H), 4.43 (d, J = 7.3 Hz,
2H, -O-CH₂,CH₂-O-), 4.40 (d, J = 7.3 Hz, 2H, -O-CH₂,CH₂-O-), 3.79 (t, J = 6.3 Hz, 8H, CH₂-OTIPS),
2.40-2.20 (m, 8H, CH₂-CH₂-CH₂), 1.72-1.52 (m, 8H, CH₂), 1.09 (m, 72H, Si(CH₃)₂), 1.08 (m,
12H, SiCH); ¹³C NMR (125 MHz, CDCl₃, 300 K) δ (ppm): 155.1, 152.4, 152.2, 152.1, 139.6,
139.3, 139.1, 138.3, 120.9, 119.3, 119.06, 117.1, 113.6, 99.1, 98.6, 76.9, 62.9, 62.8, 37.3, 36.6,
30.9, 30.9, 27.1, 26.1, 18.2, 12.2; IR (ATR): ν = 2942, 2854, 1464, 1449, 1417, 1382, 1312,
1261, 1231, 1177, 1105, 1086, 1021, 1011, 964, 888, 789, 727 cm⁻¹; Anal. Calcd for
C₈₀H₁₂₅Br₃O₁₂Si₄·H₂O : C, 58.27; H, 7.76; found: C, 58.56 ; H, 7.77.

Figure S3. ¹H NMR (500 MHz) spectrum of 3 recorded at 300 K in CDCl₃.

S5
Triestercavitand

Tribromocavitand 3 (1.17 g, 0.72 mmol) was dissolved in freshly distilled THF (2 mL) under argon and the solution was evaporated to dryness and then heated to 80°C at 0.1 mmHg over 1 h. The procedure was repeated twice. To a solution of the dried tribromocavitand in THF (26 mL) at -78 °C, was slowly added freshly titrated n-butyllithium (1.56 mL, 1.52 M solution, 2.37 mmol). After two hours, methyl chloroformate (554 µL, 7.17 mmol) was rapidly added and the reaction mixture was stirred for 12 hours at room temperature. Water (2 mL) was added at 0°C and the solvents were evaporated under vacuum. The residue was taken up in CH₂Cl₂ (50 mL), washed with water (2 x 30 mL). The organic layer was dried over anhydrous MgSO₄, filtered and concentrated to give 1.20 g of white foam. The product was used in the next step without further purification.

Triolcavitand (4)

The crude triestercavitand (0.72 mmol) was dissolved in freshly distilled THF (2 mL) under argon and the solution was evaporated to dryness and then heated to 80°C at 0.1 mmHg over 1 h. The procedure was repeated twice. Under an inert atmosphere, the solution of this dried triestercavitand in dry THF (27 mL) was introduced into a flask containing LiAlH₄ (273 mg, 7.2 mmol) and dry THF (27 mL) at 0°C. The mixture was stirred at 0°C for 10 min then at room
temperature for 3 h. To this mixture was added dropwise at 0°C ethyl acetate (30 mL), MeOH (2 mL) and finally water (2 mL). The mixture was stirred at room temperature for 1 h. Na2SO4 was added and stirring was followed for 30 min. The reaction mixture was filtered over Büchner. The filtrate was concentrated to yield the crude product, which was then purified by flash column chromatography on silica gel (DCM/MeOH, 94:6) to give triol 4 (784 mg) in 74 % yield over 2 steps.

1H NMR (500 MHz, CDCl3, 300 K) δ (ppm): 7.14 (s, 3H, Ar-H down), 7.13 (s, 1H, Ar-H down), 6.50 (Ar-H up, s, 1H), 5.90 (d, J = 7.3 Hz, 2H, -O-CH2out-O-), 5.81 (d, J = 7.3 Hz, 2H, -O-CH2out-O-), 4.82 (t, J = 7.8 Hz, CH2-CH, 2H), 4.79 (t, J = 7.8 Hz, CH2-CH, 2H), 4.58 (br s, 4H CH2OH), 4.52 (br s, CH2OH), 4.49 (d, J = 7.4 Hz, 2H, -O-CH2in-O-), 4.40 (d, J = 7.3 Hz, 2H -O-CH2in-O-), 3.78 (t, J = 6.5 Hz, 8H, CH2-OTIPS), 2.36-2.22 (m, 8H, CH2-CH2-CH), 1.70-1.52 (m, 8H, CH2), 1.09 (s, 72H, Si(CH3)2); 1.08 (s, 12H, SiCH); 13C NMR (125 MHz, CDCl3, 300 K) δ (ppm): 155.0, 153.9, 153.7, 138.3, 138.1, 138.1, 126.5, 126.3, 120.6, 120.4, 120.3, 117.0, 99.9, 99.7, 63.1, 55.7, 55.5, 36.5, 36.2, 31.1, 26.3, 26.3, 18.2, 12.2. – IR (ATR): ν = 2948, 2858, 2119, 1597, 1483, 1461, 1387, 1300, 1241, 1100, 1086, 1016, 1001, 964, 882 cm⁻¹. Anal. Calcd for C₈₃H₁₃₄O₁₅Si₄·3H₂O: C, 64.80; H, 9.17; found: C, 64.80; H, 8.82.

Figure S5. 1H NMR (500 MHz) spectrum of 4 recorded at 300 K in CDCl₃.
Bowl-ligand (5)

Triol 4 (383 mg, 0.26 mmol) was dissolved in freshly distilled THF (2 mL) under argon and the solution was evaporated to dryness and then heated to 80°C at 0.1 mmHg over 1 h. The procedure was repeated twice. Under an inert atmosphere, a solution of this dried triol in dry DMF (9 mL) was introduced into a flask containing sodium hydride (60% in oil, washed with pentane, 310 mg, 7.74 mmol) in dry DMF (9 mL) at 0°C. The reaction mixture was stirred at 0°C for 30 minutes then 1 h at r.t. At 0°C, 2-chloromethyl-1-methyl-1H-imidazole hydrochloride (180 mg, 1.08 mmol) was added to the reaction mixture, which was then stirred at 0°C for 30 minutes. Further addition of 2-chloromethyl-1-methyl-1H-imidazole hydrochloride (180 mg, 1.08 mmol) was realized at 0°C and the mixture stirred at 0°C for additional 30 minutes. This procedure was repeated once again. The reaction mixture was subsequently stirred overnight at r.t. and then poured dropwise at 0°C into water (100 mL) to precipitate the product. The solid was filtered over Büchner, and washed with water. It was subsequently dissolved in dichloromethane (50 mL), washed with water twice (2*30 mL), dried over Na₂SO₄, filtered and concentrated. The crude product was triturated with pentane (2*5 mL) to give ligand 5 (337 mg, 74%) as a white powder. ¹H NMR (500 MHz, CDCl₃, 300 K) δ (ppm) : 7.09 (s, 3H, Ar-H down), 7.05 (s, 1H, Ar-H down), 6.95 (br s, 1H, Im-H), 6.94 (br s, 2H, Im-H), 6.92 (br s, 1H, Im-H), 6.86 (br s, 2H, Im-H), 6.40 (s, 1H, Ar-H up), 5.65 (d, J = 7.0
Hz, 2H, -O-CH\textsubscript{2}out-O-), 5.60 (d, \(J = 7.0\) Hz, 2H, -O-CH\textsubscript{2}out-O-), 4.76 (t, \(J = 8.0\) Hz, CH\textsubscript{2}-CH\textsubscript{m}, 2H), 4.73 (t, \(J = 8.0\) Hz, CH\textsubscript{2}-CH\textsubscript{m}, 2H), 4.60 (s, 2H, Im-CH\textsubscript{2}-O-), 4.58 (s, 4H, Im-CH\textsubscript{2}-O-), 4.35 (d, \(J = 7.0\) Hz, 2H, -O-CH\textsubscript{2}in-O-), 4.32 (s, 4H, Ar-CH\textsubscript{2}-O-), 4.19 (d, \(J = 7.0\) Hz, 2H, -O-CH\textsubscript{2}in-O-), 4.17 (s, 2H, Ar-CH\textsubscript{2}-O-), 3.75 (t, \(J = 6.7\) Hz, 8H, CH\textsubscript{2}-OH), 3.66 (s, 3H, NCH\textsubscript{3}), 3.62 (s, 6H, NCH\textsubscript{3}), 2.25 (m, 8H, CH\textsubscript{2}-CH\textsubscript{2}-CH\textsubscript{m}), 1.57 (m, 8H, OH-CH\textsubscript{2}-CH\textsubscript{m}), 1.09-1.06 (m, 84H, Si-CH-(CH\textsubscript{3})\textsubscript{2}); \(^{13}\)C NMR (125 MHz, CDCl\textsubscript{3}, 300 K) \(\delta\) (ppm) : 154.9, 154.3, 154.1, 144.6, 144.4, 138.1, 138.0, 137.8, 127.8, 127.5, 123.9, 123.5, 122.3, 122.1, 120.9, 120.7, 120.5, 117.1, 99.6, 99.5, 64.8, 63.1, 62.3, 61.9, 36.5, 36.2, 33.0, 32.9, 31.2, 31.1, 26.3, 26.2, 18.2, 12.2; ESI-MS (MeOH) m/z: 1766.5 \([\text{Rim(OTIPS)}\textsubscript{4}H]^+\). ESI-MS (MeOH) m/z: 1766.05 \([\text{Rim(OTIPS)}\textsubscript{4} + H]^+\); HRMS (ESI+, Orbitrap) m/z: 1767.05078 (caled for \([M+H]^+\) 1767.05045 (0.2 ppm)); Anal. Calcd for C\textsubscript{98}H\textsubscript{152}N\textsubscript{6}O\textsubscript{15}Si\textsubscript{4}H\textsubscript{2}O: C, 65.95 \%; H, 8.70 \%; found: C, 65.71 \%; H, 8.70.

Figure S7. \(^{1}H\) NMR (500 MHz) spectrum of 5 recorded at 300 K in CDCl\textsubscript{3}.
Figure S8. 13C NMR (125 MHz) spectrum of 5 recorded at 300 K in CDCl$_3$.

Figure S9. HRMS (ES, Orbitrap) of bowl-ligand 5

Bowl-ligand deprotected (6)

Ligand 5 (0.050 g, 0.028 mmol) was dissolved in a THF/H$_2$O (1:1) mixture (3 mL). TFA (0.3 mL, 4.040 mmol) was added dropwise and the mixture was stirred overnight at r.t. TFA was evaporated, after which the resulting solid was suspended in toluene (2 mL). Solvents were
evaporated. Toluene was again and solvents were evaporated. The resulting solid was dried at
the vacuum ramp. It was then dissolved in MeOH (4 mL) and stirred with DOWEX OH⁻ resin
(BioRad, AG-1*4 resin, 200-400 mesh, chloride form transformed to hydroxide form by
treating the commercial resin with 2M NaOH solution and rinsing it with water until neutral
pH). The resin was filtered off over a frit filter (pore size nº 3) and washed with MeOH. The
filtrate was concentrated, suspended in a (1:1) mixture of toluene/MeOH, solvents were
evaporated and the resulting solid was dried under vacuum, than triturated with pentane (3*3
mL), centrifugated and dried over vacuum ramp, yielding product 6 as a white powder (0.041
g, 91%).

¹H NMR (500 MHz, CDCl₃/MeOD, 300K) δ (ppm): δ (ppm) : 7.07 (s, 3H, Ar-H down), 7.03
(s, 1H, Ar-H down), 6.79 (s, 1H, Im-H), 6.75 (s, 1H, Im-H), 6.73 (s, 2H, Im-H), 6.26 (s, 1H,
Ar-H up), 5.49 (d, J = 2.4 Hz, 2H, -O-CH₂,out-O-), 5.48 (d, J = 2.2 Hz, 2H, -O-CH₂,out-O-), 4.58
(t, J = 8.1 Hz, 2H, CH₂-CH), 4.53 (t, J = 8.1 Hz, 2H, CH₂-CH), 4.60 (s, 2H, Im-CH₂-O-), 4.58
(s, 4H, Im-CH₂-O-), 4.37 (s, 4H, Ar-CH₂-O-), 4.36 (s, 2H, Ar-CH₂-O-), 4.17-4.14 (m, 6H, Ar-
CH₂-O, -O-CH₂in-O-), 4.12-4.00 (m, 8H, Ar-CH₂-O, OH, -O-CH₂in-O-), 3.51 (t, J = 5.9 Hz, 8H,
CH₂OH), 3.47 (s, 3H, NCH₃), 3.46 (s, 6H, NCH₃), 2.21-2.10 (m, 8H, CH₂-CH₂-CH), 1.44-.1.32
(m, 8H, CH₂); ¹³C NMR (125 MHz, CDCl₃/MeOD, 300 K) δ (ppm): 154.6, 154.0, 153.9, 153.8,
144.2, 144.0, 137.9, 137.8, 137.6, 126.7, 126.5, 123.4, 123.0, 122.3, 122.1, 121.2, 121.0, 120.7,
116.6, 99.3, 63.8, 63.7, 62.0, 61.8, 36.7, 36.5, 32.6, 30.8, 26.15, 26.1; IR (ATR): ν = 3290,
2937, 2883, 1590, 1495, 1471, 1461, 1421, 1401, 1288, 1239, 1150, 1060, 1019, 1001, 744 cm⁻¹;
ESI-MS (MeOH) m/z: 1141.5 [Rim(OH)₄ + H]⁺ 1163.5; HRMS (TOF ES+) m/z: 1141.5150
(calcd for [M+H]⁺ 1141.5134 (1.4 ppm))
Figure S10. 1H NMR (500 MHz) spectrum of 6 recorded at 300 K in CDCl$_3$/MeOD.

Figure S11. 13C NMR (125 MHz) spectrum of 6 recorded at 300 K in CDCl$_3$/MeOD.
Figure S12. MS (ESI) of bowl-ligand 6

Figure S13. MS (ESI) of bowl-ligand 6 - Zoom
Figure S14. HRMS (TOF ES+) of bowl-ligand 6

Water-soluble bowl-ligand WRim₃ (7)

Bowl ligand 6 (200 mg, 0.175 mmol) was dissolved in DMF (10 mL). To this solution was added at 0°C N,N-diisopropylethylamine (360 µL, 2.18 mmol) followed by mesyl chloride (160 µL, 2.06 mmol). The reaction mixture was stirred at r.t. overnight. Dichloromethane (10 mL) was added and the organic layer was washed twice with a saturated solution of NaHCO₃ followed by brine. Organic layer was dried over Na₂SO₄, filtered and concentrated.

The mesylated cavitand (20 mg, 0.014 mmol) was dissolved in 500 µL of acetone in a sealed tube. Trimethylamine (500 µL of a 40% aqueous solution) was added and stirred during 12 h at 40°C. The aqueous solution was concentrated and the residue was dried under vacuum to afford 19 mg of a yellow solid (85 %). ¹H NMR (500 MHz, D₂O, 300 K) δ (ppm): 7.60 (s, 3H, Ar-H down), 7.58 (s, 1H, Ar-H down), 7.18 (s, 3H, Im-H), 7.06 (s, 3H, Im-H), 6.79 (s, 1H, Ar-H up), 5.86 (d, J = 7.4 Hz, 2H, -O-CH₂₂out-O-), 5.81 (d, J = 7.4 Hz, 2H, O-CH₂out-O-), 4.68 (s, 4H, Im-CH₂₂O-), 4.62 (s, 2H, -O-CH₂-Im), 4.50-4.37 (m, 6H, Ar-CH₂₂O-), 4.38 (d, J = 6.6 Hz, 2H, -O-CH₂₂in-O-), 4.27 (d, J = 6.6 Hz, 2H, -O-CH₂₂in-O-), 3.61 (s, 6H, NCH₃), 3.55-3.49 (m, 11H, NCH₃, CH₂-CH₂-CH), 1.92 (m, 8H, N⁺Me₃-CH₂-CH₂); ¹³C NMR (125 MHz, D₂O, 300 K) δ (ppm): 156.1, 155.4, 155.3, 155.2, 155.1, 145.6, 139.3, 139.2, 139.0, 127.1, 127.0, 126.9, 125.4, 124.8, 123.4, 118.8, 101.3, 101.2, 101.1, 101.0, 100.8, 64.6, 64.4, 64.3, 63.2, 63.1, 59.6, 54.2, 46.1, 39.0, 38.0, 37.8, 37.5, 34.0, 27.6, 27.5, 27.4, 27.2, 22.4, 22.3, 22.2, 20.6; HRMS (TOF ES+)
m/z: 467.9232 (calcd for [WRim₃(N’Me₃)₄(OMs)]³⁺, C₇₅H₁₀₇N₁₀O₁₄S: M = 1403.7689; m/z: 467.9229 (0.5 ppm))

Figure S15. 1H NMR (500 MHz) spectrum of WRim₃ recorded at 300 K in D₂O.

Figure S16. 13C NMR (125 MHz) spectrum of WRim₃ recorded at 300 K in D₂O.
Figure S17. HRMS (TOF ES+) of WRim3.
Estimation of the imidazole pKa values

A solution of WRim3 7 (2.0 mg, 1.2 µmol) in D₂O (500 µL, [7] = 2.4 mM) was prepared. pD value was measured (pD = 6.42). Aliquots of a NaOD solution or a HNO₃ solution were gradually added to this solution and pD values and ¹H NMR spectra were recorded after each addition.

Figure S18. ¹H NMR (300K, 500 MHz) of a solution of WRim3 7 in D₂O (C = 2.4 mM) at different pD values.

pD range for WRim3Zn complex detection

A solution of WRim3 7 (2.0 mg, 1.2 µmol) in the presence of 1 equiv. of Zn(NO₃)₂ in D₂O (500 µL, [7] = 2.4 mM) was prepared. Aliquots of a NaOD solution or a HNO₃ solution were gradually added to this solution and pD values and ¹H NMR spectra were recorded after each addition.
Figure S19. 1H NMR (300K, 500 MHz) of a solution of WRim3 7 in the presence of 1 equiv. of Zn(NO$_3$)$_2$ in D$_2$O (C = 2.4 mM) at different pD values.

Optimal pD determination

A solution of WRim3 7 (2.4 mg, 1.5 µmol) in D$_2$O (600 µL, [7] = 2.5 mM) in the presence of 1 equiv. of Zn(OAc)$_2$ and 1.1 equiv. of DMF was prepared. pD value was measured (pD = 7.15). Aliquots of a NaOD solution or a HNO$_3$ solution were gradually added to this solution and pD values and 1H NMR spectra were recorded after each addition. The integration value of the methyl of the encapsulated acetate anion signal in comparison with a reference peak (DMF) was evaluated at different pD.
Figure S20. 1H NMR (300K, 500 MHz) of a solution of WRim$_3$ 7 in D$_2$O (C = 2.5 mM) in the presence of 1 equiv. of Zn(OAc)$_2$ and 1.1 equiv. of DMF at different pD values.

K’ determination at various pD

WRim$_3$Zn + AcO$^-$ = WRim$_3$ZnOAc

\[
\frac{I}{I_{ref}} = \frac{[WRim_3ZnOAc]}{[DMF]} = \frac{[WRim_3ZnOAc]}{1.1*[WRim_3Zn]_0}
\]

$[WRim_3Zn]_0 = 2.5$ mM and $[OAc]_0 = 2*[WRim_3Zn]_0 = 5$ mM

\[
K_{pD}' = \frac{[WRim_3ZnOAc]}{[WRim_3Zn][OAc]}
\]

\[
K_{pD}' = 1.1*(I / I_{ref}) * 1/([WRim_3Zn]_0 * (1-1.1 I / I_{ref}) * (2-1.1 I / I_{ref}))
\]

<table>
<thead>
<tr>
<th>pD</th>
<th>I/Iref</th>
<th>$K'pD$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.83</td>
<td>0.2</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>6.02</td>
<td>0.2467</td>
<td>86</td>
</tr>
<tr>
<td>6.24</td>
<td>0.4233</td>
<td>227</td>
</tr>
<tr>
<td>6.65</td>
<td>0.4933</td>
<td>326</td>
</tr>
<tr>
<td>7.38</td>
<td>0.6067</td>
<td>602</td>
</tr>
<tr>
<td>8.29</td>
<td>0.5167</td>
<td>368</td>
</tr>
<tr>
<td>9.28</td>
<td>0.2067</td>
<td>66</td>
</tr>
<tr>
<td>10.18</td>
<td>0.14</td>
<td>39</td>
</tr>
<tr>
<td>3.73</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10.66</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Full pictures of 1H NMR spectra cited in the article

Figure S21. 1H NMR (253 K, 600 MHz) of organosoluble Rim$_3$Zn(OAc) in CD$_3$CN.

Figure S22 (Full spectrum of Figure 2b). 1H (WATERGATE solvent suppression) NMR spectrum (500 MHz) of free ligand WRim_3 (2.4 mM) in the presence of 1 equiv. of Zn(NO$_3$)$_2$ in D$_2$O, pD = 7.3 at 300 K.
Figure S23 (Full spectrum of Figure 2c). 1H (WATERGATE solvent suppression) NMR spectrum (500 MHz) of free ligand WRim$_3$ (2.9 mM) in the presence of 1 equiv. of Zn(OAc)$_2$ in H$_2$O, pH = 7.2 at 300 K.

Figure S24 (Full spectrum of Figure 2d). 1H (WATERGATE solvent suppression) NMR spectrum (500 MHz) of free ligand WRim$_3$ (2.9 mM) in the presence of 1 equiv. of Zn(OAc)$_2$ in H$_2$O, pH = 7.2 at 280 K.
Figure S25. 1H (WATERGATE solvent suppression) NMR spectra (500 MHz) of free ligand \textit{WRim}_3 (2.4 mM) in the presence of 1 equiv. of Zn(NO$_3$)$_2$ in D$_2$O, pD = 7.9 at 280 K (top); and after addition of 3 equiv. of NaOAc at pD = 7.4 at 280 K (pD value of the solution was adjusted to this value by addition of aqueous HNO$_3$ solution aliquots).