Electronic Supplementary Information

Synthesis of a novel water-soluble cylindrical macrotricyclic host and its complexation with *N*-methylquinolinium and *N*-methylisoquinolinium salts: formation of 1:2 complexes in water

Fei Zeng^{*a,b*} and Chuan-Feng Chen^{*,*a*}

^aBeijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. ^bUniversity of Chinese Academy of Sciences, Beijing 100049, China.

Email: cchen@iccas.ac.cn

Contents

1. Genaral information
2. Complexation between host 1 and guest 3
3. Complexation between host 1 and guest 4
4. Photographs of complexation and decomplexation of complex 1.3_2
5. Photographs of complexation and decomplexation of complex 1.4_2
6. Determination of the average association constants of the complexes
7. Partial ¹ H- ¹ H COSY and ROESY spectra of complexes $1\cdot 2_2$, $1\cdot 3_2$ and $1\cdot 4_2$
8. ¹ H NMR, ¹³ C NMR and HRESI spectra of all new compounds
9. UV/Vis spectral of complexes 1·22, 1·32 and 1·42 S 错误! 未定义书签。
10. The ¹ H-NMR titrations spetra of complexes 1·2 ₂ , 1·3 ₂ and 1·4 ₂ S 错误! 未定义书
签。
11. The Job-Plot for complexes $1 \cdot 2_2$, $1 \cdot 3_2$ and $1 \cdot 4_2$
12. Crystal data
13. References

1. General information

Melting points, taken on an electrothermal melting point apparatus, are uncorrected. ¹H NMR, ¹³C NMR spectra were recorded on a Bruker DMX300 NMR spectrometer. 2D-ROESY experiments were performed on a Bruker AVANCE 600 MHz spectrometer. High-resolution mass spectra (HRMS) were recorded on a Thermo Fisher Scientific ExactiveTM spectrometer. Compounds **2**, ^{S1} **4**, ^{S2} **5**^{S3} and **6**^{S4} were prepared according to the literature procedures.

Synthesis of host 1. A mixture of 5 (210 mg, 0.16 mmol) and NaOH (26 mg, 0.64 mmol) in CH₃OH/H₂O (v/v = 9:1, 15 mL) was stirred for 12 hours at 60 0 C under nitrogen atmosphere. Then, the solvent was removed under vacuum to give host 1 (211mg, 98%) as a dark red solid. Mp: >300 $^{\circ}$ C. ¹H NMR (300 MHz, D₂O, 295 K): δ 6.97 (s, 8H), 3.99-3.84 (m, 16H), 3.55-3.50 (m, 32H), 2.02 (s, 12H). ¹³C NMR (75 MHz, D₂O, 295 K): δ 175.2, 147.5, 144.4, 143.6, 109.6, 69.9, 69.4, 69.3, 48.1, 13.2. HRMS cald. for [M-2Na]²⁻: 633.1954. Found: 633.1966.

Synthesis of guest 3. A mixture of 5-ethoxyquinoline 6 (200 mg, 1.15 mmol) and $CH_{3}I$ (0.2 mL) was in acetone (20 mL) stirred overnight at room temperature under nitrogen atmosphere. Then, the mixture was filtrated, washed with acetone, and dried in vacuo to give guest 3 (346 mg, 95%) as a yellow solid. Mp: 198-199 °C. ¹H NMR

(300 MHz, D₂O, 295 K): δ 9.37-9.34 (d, J = 8.7 Hz, 1H), 9.05-9.03 (d, J = 5.7 Hz, 1H), 8.09-8.04 (m, 1H), 7.85-7.74 (m, 2H), 7.33-7.30 (d, J = 8.1 Hz, 1H), 4.49 (s, 3H), 4.36-4.29 (m, 2H), 1.49-1.44 (m, 3H). ¹³C NMR (75 MHz, D₂O, 295 K): δ 155.7, 148.9, 142.0, 139.3, 137.1, 122.4, 119.9, 109.0, 65.8, 45.6, 13.7. HRMS cald. for [M-I]⁺: 188.1070. Found: 188.1064.

2. Complexation between host 1 and guest 3

Fig. S1 Partial ¹H NMR spectra (300 MHz, D₂O, 295 K) of (a) free host **1**, (b) free guest **3**, (c) **1** and 2.0 equiv of **3**, (d) after addition of 2.0 μ L of aqueous DCl solution (20 wt%) to c, and (e) after addition of 1.0 μ L of aqueous NaOD solution (40 wt%) to d. [**1**]₀ = 4.0 mM.

3. Complexation between host 1 and guest 4

Fig. S2 Partial ¹H NMR spectra (300 MHz, D₂O, 295 K) of (a) free host **1**, (b) free guest **4**, (c) **1** and 2.0 equiv of **4**, (d) after addition of 2.0 μ L of aqueous DCl solution (20 wt%) to c, and (e) after addition of 1.0 μ L of aqueous NaOD solution (40 wt%) to d. [**1**]₀ = 4.0 mM.

4. Photographs of complexation and decomplexation of complex 1.32

Fig. S3 Photographs of water solutions of (a) **1** and 2.0 equiv of **3**, (b) after the addition of 2.0 μ L of aqueous DCl solution (20 wt%) to a, and (c) after the addition of 1.0 μ L of aqueous NaOD solution (40 wt%) to b. [**1**]₀ = 4.0 mM.

5. Photographs of complexation and decomplexation of complex 1.42

Fig. S4 Photographs of water solutions of (a) **1** and 2.0 equiv of **4**, (b) after the addition of 2.0 μ L of aqueous DCl solution (20 wt%) to a, and (c) after the addition of 1.0 μ L of aqueous NaOD solution (40 wt%) to b. [**1**]₀ = 4.0 mM.

6. Determination of the average association constants of the complexes

 Δ is the observed chemical shift change relative to uncomplexed species, and Δ_0 is calculated chemical shift change of fully complexed species, and is determined by

extrapolation of a plot of Δ vs 1/[1] in the high initial concentration range of 1. The complex fraction (*p*) value was calculated from $p = \Delta / \Delta_0$, and [1]_{uc} values were calculated form [1]–0.5*p*[2]₀. A plot of *p* / [1]_{uc} vs *p* was used to determine the association constant K_{av} , which is the average value of the slope and the intercept. The method used for the determination of average association constants of complexes 1·3₂ and 1·4₂ is similar to that of 1·2₂.

Fig. S5 Mole ratio plot for the complexation of 1 and 2 in D_2O at 295 K. $[1]_0 = 3.0$ mM.

Fig. S6 Determination of Δ_0 of H_1 for the complexation between host 1 and guest 2 in

D₂O at 295K.

Fig. S7 Scatchard plot for the complexation of host 1 and guest 2 in D₂O at 295K.

Fig. S8 Mole ratio plot for the complexation of 1 and 3 in D_2O at 295 K. $[1]_0 = 3.0$

mM.

Fig. S9 Determination of Δ_0 of H₁ for the complexation between host 1 and guest 3 in D₂O at 295K.

Fig. S10 Scatchard plot for the complexation of 1 and guest 3 in D₂O at 295K.

Fig. S11 Mole ratio plot for the complexation of 1 and 4 in D_2O at 295 K. $[1]_0 = 3.0$ mM.

Fig. S12 Determination of Δ_0 of H_1 for the complexation between host 1 and guest 4

in D₂O at 295K.

Fig. S13 Scatchard plot for the complexation of host 1 and guest 4 in D₂O at 295K.

7. Partial ¹H-¹H COSY and ROESY spectra of complexes 1·2₂, 1·3₂ and 1·4₂

Fig. S14 Partial ¹H-¹H COSY spectrum (600 MHz, D₂O, 295 K) of a solution of host **1** and 2.0 equiv of guest **2**. $[\mathbf{1}]_0 = 8.0$ mM.

Fig. S15 Partial ¹H-¹H ROESY spectrum (600 MHz, D₂O, 295 K) of a solution of host **1** and 2.0 equiv of guest **2**. $[\mathbf{1}]_0 = 8.0$ mM.

Fig. S16 Partial ¹H - ¹H ROESY spectrum (600 MHz, D₂O, 295 K) of a solution of host **1** and 2.0 equiv of guest **3**. $[\mathbf{1}]_0 = 8.0$ mM.

Fig. S17 Partial ¹H-¹H COSY spectrum (600 MHz, D₂O, 295 K) of a solution of host 1 and 2.0 equiv of guest 4. $[1]_0 = 8.0$ mM.

Fig. S18 Partial ¹H-¹H ROESY spectrum (600 MHz, D₂O, 295 K) of a solution of host 1 and 2.0 equiv of guest 4. $[1]_0 = 8.0$ mM.

8. ¹H NMR, ¹³C NMR and HRMS spectra of new compounds

Fig. S19 ¹H NMR spectrum (300 MHz, D₂O, 295 K) of host **1**.

Fig. S20 13 C NMR spectrum (75 MHz, D₂O, 295 K) of host 1.

Fig. S21 1 H NMR spectrum (300 MHz, D₂O, 295 K) of guest 3.

Fig. S22 13 C NMR spectrum (75 MHz, D₂O, 295 K) of guest 3.

Fig. S23 HRESI mass spectrum of host 1.

Fig. S24 HRESI mass spectrum of guest 3.

9. UV/Vis spectra of complexes 1.22, 1.32 and 1.42

Fig. S25 UV/Vis absorption spectra of host **1**, guest **2** and complex $1 \cdot 2_2$. [**1**]= 2.0×10^{-5} M.

Fig. S26 UV/Vis absorption spectra of host **1**, guest **3** and complex $1 \cdot 3_2$. [**1**]= 2.0×10^{-5} M.

Fig. S27 UV/Vis absorption spectra of host **1**, guest **3** and complex $1 \cdot 3_2$. [1]= 2.0×10^{-5} M.

10. The ¹H-NMR titrations spectra of complexes $1 \cdot 2_2$, $1 \cdot 3_2$ and $1 \cdot 4_2$

Fig. S28 ¹H-NMR (500 MHz, D₂O, 295 K) titrations spectra of guest **2** to host **1**, From bottom to top the addition of guest **2** are 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.2, 3.4, 3.6, 3.8, 4.0, 4.2 equivalent of **1**. [**1**]= 3.0 mM.

Fig. S29 ¹H-NMR (300 MHz, D₂O, 295 K) titrations spectra of guest **3** to host **1**, From bottom to top the addition of guest **3** are 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.2, 3.4, 3.6, 3.8, 4.0, 4.2 equivalent of **1**. [**1**]= 3.0 mM.

Fig. S30 ¹H-NMR (500 MHz, D₂O, 295 K) titrations spectra of guest **4** to host **1**, From bottom to top the addition of guest **4** are 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.2, 3.4, 3.6, 3.8, 4.0, 4.2 equivalent of **1**. [**1**]= 3.0 mM.

11. The Job-Plot for complexes $1 \cdot 2_2$, $1 \cdot 3_2$ and $1 \cdot 4_2$

Fig. S31 The Job plot for 1·2₂ complex in water ([1]=[2], [1]+[2]=8×10⁻⁵ M, $\lambda_{ex} = 316$ nm).

Fig. S32 The Job plot for 1.3₂ complex in water ([1]=[3], [1]+[3]=8×10⁻⁵ M, $\lambda_{ex} = 316$ nm).

Fig. S33 The Job plot for 1.4₂ complex in water ([1]=[4], [1]+[4]=8×10⁻⁵ M, $\lambda_{ex} = 320$ nm).

12. Crystal data

	S20	
Crystal system	Monoclinic	
Wavelength	0.71073 Å	
Temperature	173.1500 K	
Formula weight	1511.57	
Empirical formula	C84 H90 N2 O24	

Space group	P 1 21/n 1	
Unit cell dimensions	a = 15.814(4) Å	α=90°.
	b = 14.779(3) Å	β=96.603(4)°.
	c = 21.657(5) Å	$\gamma = 90^{\circ}$.
Volume	5027.9(19) Å ³	
Z	2	
Density (calculated)	0.998 Mg/m ³	
Absorption coefficient	0.073 mm ⁻¹	
F(000)	1600	
Crystal size	0.26 x 0.17 x 0.15 mm ³	
Theta range for data collection	1.672 to 27.482°.	
Index ranges	-20<=h<=20, -19<=k<=19, -28<=l<=26	
Reflections collected	40163	
Independent reflections	11480 [R(int) = 0.0638]	
Completeness to theta = 26.000°	99.8 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	1.0000 and 0.6554	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	11480 / 402 / 580	
Goodness-of-fit on F ²	1.622	
Final R indices [I>2sigma(I)]	R1 = 0.1131, wR2 = 0.2870	
R indices (all data)	R1 = 0.1401, wR2 = 0.3004	
Extinction coefficient	n/a	
Largest diff. peak and hole	1.069 and -0.600 e.Å ⁻³	

13. References

- [S1] U. Asseline, M. Chassignol, Y. Aubert and V. Roig, Org. Biomol. Chem., 2006, 4, 1949.
- [S2] J. Blagg, S. J. Coote, S. G. Davies and B. E. Mobbs, J. Chem. Soc., Perkin Trans. 1,1986, 2257.
- [S3] Y. S. Su, J. W. Liu, Y. Jiang and C.-F. Chen, Chem. Eur. J., 2011, 17, 2435.
- [S4] M.-H. Son, J. Y. Kim, E. J. Lim, D.-J. Baek, K. Choi, J. K. Lee, A. N. Pae, S.-J. Min and Y. S. Cho, *Bioorg. Med. Chem. Lett.*, 2013, 23, 1472.