Conjugated Fluorene-Thiophenes Prepared From Azomethines

Connections-I: The Effect of Electronic and Aryl Groups on the
Spectroscopic and Electrochemical Properties

Stéphane Dufresne, Sergio Andrés Pérez Guarín, Andréanne Bolduc, Alex N. Bourque,
and W. G. Skene*

Centre for Self-Assembled Chemical Structures, Department of Chemistry, Department of
Chemistry University of Montreal, Pavillon J.A. Bombardier, C.P. 6128,
succ. Centre-ville, Montreal, QC H3C 3J7, Canada Fax (514) 340-5290; Tel (514) 340-
5174; E-mail: w.skene@umontreal.ca
Table of contents

Figure 1. 1H spectrum of 1 (400 MHz, Acetone-d$_6$). ... 4
Figure 2. 13C spectrum of 1 (80 MHz, DMSO-d$_6$). ... 5
Figure 3. 1H spectrum of 2 (400 MHz, DMSO-d$_6$). ... 6
Figure 4. 13C spectrum of 2 (80 MHz, Acetone-d$_6$). ... 7
Figure 5. 1H spectrum of 3 (400 MHz, Acetone-d$_6$). ... 8
Figure 6. 13C spectrum of 3 (80 MHz, DMSO-d$_6$)... 9
Figure 7. 1H spectrum of 4 (400 MHz, Acetone-d$_6$). ... 10
Figure 8. 1H spectrum of 5 (400 MHz, Acetone-d$_6$). ... 11
Figure 9. 13C spectrum of 5 (80 MHz, Acetone-d$_6$). ... 12
Figure 10. 1H spectrum of 7 (400 MHz, DMSO-d$_6$). ... 13
Figure 11. 1H spectrum of 9 (400 MHz, DMSO-d$_6$). .. 14
Figure 12. 1H spectrum of 10 (400 MHz, DMSO-d$_6$). .. 15
Figure 13. Absorbance (black) and fluorescence (red) spectra of 1 measured in anhydrous and
deaerated dichloromethane. ... 16
Figure 14. Absorbance (black) and fluorescence (red) spectra of 2 measured in anhydrous and
deaerated dichloromethane. ... 16
Figure 15. Absorbance (black) and fluorescence (red) spectra of 3 measured in anhydrous and
deaerated dichloromethane. ... 17
Figure 16. Absorbance (black) and fluorescence (red) spectra of 4 measured in anhydrous and
deaerated dichloromethane. ... 17
Figure 17. Absorbance (black) and fluorescence (red) spectra of 5 measured in anhydrous and
deaerated dichloromethane. ... 18
Figure 18. Absorbance (black) and fluorescence (red) spectra of 6 measured in anhydrous and
deaerated dichloromethane. ... 18
Figure 19. Absorbance (black) and fluorescence (red) spectra of 7 measured in anhydrous and
deaerated dichloromethane. ... 19
Figure 20. Absorbance (black) and fluorescence (red) spectra of 8 measured in anhydrous and
deaerated dichloromethane. ... 19
Figure 21. Absorbance (black) and fluorescence (red) spectra of 9 measured in anhydrous and
deaerated dichloromethane. ... 20
Figure 22. Oxidation cyclic voltamogram of 1 measured in 0.1 M TBA•PF$_6$ in anhydrous DCM
at a scan rate of 100 mV/sec... 21
Figure 23. Reduction cyclic voltamogram of 1 measured in 0.1 M TBA•PF$_6$ in anhydrous DCM
at a scan rate of 100 mV/sec... 21
Figure 24. Oxidation cyclic voltamogram of 2 measured in 0.1 M TBA•PF$_6$ in anhydrous DCM
at a scan rate of 100 mV/sec... 22
Figure 25. Reduction cyclic voltamogram of 2 measured in 0.1 M TBA•PF$_6$ in anhydrous DCM
at a scan rate of 100 mV/sec... 22
Figure 26. Oxidation cyclic voltamogram of 3 measured in 0.1 M TBA•PF$_6$ in anhydrous DCM
at a scan rate of 100 mV/sec... 23
Figure 27. Reduction cyclic voltamogram of 3 measured in 0.1 M TBA•PF$_6$ in anhydrous DCM
at a scan rate of 100 mV/sec... 23
Figure 28. Oxidation cyclic voltamogram of 4 measured in 0.1 M TBA•PF$_6$ in anhydrous DCM
at a scan rate of 100 mV/sec... 24
Figure 29. Reduction cyclic voltamogram of 4 measured in 0.1 M TBA•PF₆ in anhydrous DCM at a scan rate of 100 mV/sec...24

Figure 30. Oxidation cyclic voltamogram of 5 measured in 0.1 M TBA•PF₆ in anhydrous DCM at a scan rate of 100 mV/sec...25

Figure 31. Reduction cyclic voltamogram of 5 measured in 0.1 M TBA•PF₆ in anhydrous DCM at a scan rate of 100 mV/sec...25

Figure 32. Oxidation cyclic voltamogram of 6 measured in 0.1 M TBA•PF₆ in anhydrous DCM at a scan rate of 100 mV/sec...26

Figure 33. Reduction cyclic voltamogram of 6 measured in 0.1 M TBA•PF₆ in anhydrous DCM at a scan rate of 100 mV/sec...26

Figure 34. Oxidation cyclic voltamogram of 7 measured in 0.1 M TBA•PF₆ in anhydrous DCM at a scan rate of 100 mV/sec...27

Figure 35. Reduction cyclic voltamogram of 7 measured in 0.1 M TBA•PF₆ in anhydrous DCM at a scan rate of 100 mV/sec...27

Figure 36. Oxidation cyclic voltamogram of 8 measured in 0.1 M TBA•PF₆ in anhydrous DCM at a scan rate of 100 mV/sec...28

Figure 37. Reduction cyclic voltamogram of 8 measured in 0.1 M TBA•PF₆ in anhydrous DCM at a scan rate of 100 mV/sec...28

Figure 38. Oxidation cyclic voltamogram of 9 measured in 0.1 M TBA•PF₆ in anhydrous DCM at a scan rate of 100 mV/sec...29

Figure 39. Reduction cyclic voltamogram of 9 measured in 0.1 M TBA•PF₆ in anhydrous DCM at a scan rate of 100 mV/sec...29

Table 1. Details of Crystal Structure Determination for 6...30
Figure 1. 1H spectrum of 1 (400 MHz, Acetone-d_6).
Figure 2. 13C spectrum of I (80 MHz, DMSO-d$_6$).
Figure 3. 1H spectrum of 2 (400 MHz, DMSO-d$_6$).
Figure 4. 13C spectrum of 2 (80 MHz, Acetone-d$_6$).
Figure 5. 1H spectrum of 3 (400 MHz, Acetone-d$_6$).
Figure 6. 13C spectrum of 3 (80 MHz, DMSO-d$_6$).
Figure 7. 1H spectrum of 4 (400 MHz, Acetone-d_6).
Figure 8. \(^1\text{H}\) spectrum of 5 (400 MHz, Acetone-d\(_6\)).
Figure 9. 13C spectrum of 5 (80 MHz, Acetone-d$_6$).
Figure 10. 1H spectrum of 7 (400 MHz, DMSO-d_6).
Figure 11. 1H spectrum of 9 (400 MHz, DMSO-d_6).
Figure 12. ^{1}H spectrum of 10 (400 MHz, DMSO-d$_6$).
Figure 13. Absorbance (black) and fluorescence (red) spectra of 1 measured in anhydrous and deaerated dichloromethane. Excitation wavelength: 357 nm.

Figure 14. Absorbance (black) and fluorescence (red) spectra of 2 measured in anhydrous and deaerated dichloromethane. Excitation wavelength: 338 nm.
Figure 15. Absorbance (black) and fluorescence (red) spectra of 3 measured in anhydrous and deaerated dichloromethane. Excitation wavelength: 424 nm.

Figure 16. Absorbance (black) and fluorescence (red) spectra of 4 measured in anhydrous and deaerated dichloromethane. Excitation wavelength: 466 nm.
Figure 17. Absorbance (black) and fluorescence (red) spectra of 5 measured in anhydrous and deaerated dichloromethane. Excitation wavelength: 343 nm.

Figure 18. Absorbance (black) and fluorescence (red) spectra of 6 measured in anhydrous and deaerated dichloromethane. Excitation wavelength: 387 nm.
Figure 19. Absorbance (black) and fluorescence (red) spectra of 7 measured in anhydrous and deaerated dichloromethane. Excitation wavelength: 452 nm.

Figure 20. Absorbance (black) and fluorescence (red) spectra of 8 measured in anhydrous and deaerated dichloromethane. Excitation wavelength: 375 nm.
Figure 21. Absorbance (black) and fluorescence (red) spectra of 9 measured in anhydrous and deaerated dichloromethane. Excitation wavelength: 457 nm.
Figure 22. Oxidation cyclic voltamogram of 1 measured in 0.1 M TBA•PF₆ in anhydrous DCM at a scan rate of 100 mV/sec.

Figure 23. Reduction cyclic voltamogram of 1 measured in 0.1 M TBA•PF₆ in anhydrous DCM at a scan rate of 100 mV/sec.
Figure 24. Oxydation cyclic voltamogram of 2 measured in 0.1 M TBA•PF₆ in anhydrous DCM at a scan rate of 100 mV/sec.

Figure 25. Reduction cyclic voltamogram of 2 measured in 0.1 M TBA•PF₆ in anhydrous DCM at a scan rate of 100 mV/sec.
Figure 26. Oxydation cyclic voltamogram of 3 measured in 0.1 M TBA•PF₆ in anhydrous DCM at a scan rate of 100 mV/sec.

Figure 27. Reduction cyclic voltamogram of 3 measured in 0.1 M TBA•PF₆ in anhydrous DCM at a scan rate of 100 mV/sec.
Figure 28. Oxidation cyclic voltamogram of 4 measured in 0.1 M TBA•PF₆ in anhydrous DCM at a scan rate of 100 mV/sec.

Figure 29. Reduction cyclic voltamogram of 4 measured in 0.1 M TBA•PF₆ in anhydrous DCM at a scan rate of 100 mV/sec.
Figure 30. Oxidation cyclic voltamogram of 5 measured in 0.1 M TBA•PF₆ in anhydrous DCM at a scan rate of 100 mV/sec.

Figure 31. Reduction cyclic voltamogram of 5 measured in 0.1 M TBA•PF₆ in anhydrous DCM at a scan rate of 100 mV/sec.
Figure 32. Oxidation cyclic voltamogram of 6 measured in 0.1 M TBA•PF$_6$ in anhydrous DCM at a scan rate of 100 mV/sec.

Figure 33. Reduction cyclic voltamogram of 6 measured in 0.1 M TBA•PF$_6$ in anhydrous DCM at a scan rate of 100 mV/sec.
Figure 34. Oxidation cyclic voltamogram of 7 measured in 0.1 M TBA•PF₆ in anhydrous DCM at a scan rate of 100 mV/sec.

Figure 35. Reduction cyclic voltamogram of 7 measured in 0.1 M TBA•PF₆ in anhydrous DCM at a scan rate of 100 mV/sec.
Figure 36. Oxidation cyclic voltamogram of 8 measured in 0.1 M TBA·PF₆ in anhydrous DCM at a scan rate of 100 mV/sec.

Figure 37. Reduction cyclic voltamogram of 8 measured in 0.1 M TBA·PF₆ in anhydrous DCM at a scan rate of 100 mV/sec.
Figure 38. Oxidation cyclic voltamogram of 9 measured in 0.1 M TBA•PF₆ in anhydrous DCM at a scan rate of 100 mV/sec.

Figure 39. Reduction cyclic voltamogram of 9 measured in 0.1 M TBA•PF₆ in anhydrous DCM at a scan rate of 100 mV/sec.
Table 1. Details of Crystal Structure Determination for 6.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
<td>C_{23}H_{16}N_{2}S_{2}</td>
</tr>
<tr>
<td>CCSD no.</td>
<td>see remark 1</td>
</tr>
<tr>
<td>Mw (g/mol); F(000)</td>
<td>384.50 g/mol ; 800</td>
</tr>
<tr>
<td>Crystal color and form</td>
<td>Yellow plate</td>
</tr>
<tr>
<td>Crystal size (mm)</td>
<td>0.48 x 0.46 x 0.08</td>
</tr>
<tr>
<td>T (K); d\text{calcd.} (g/cm}^3</td>
<td>293 (2) ; 1.363</td>
</tr>
<tr>
<td>Crystal System</td>
<td>Orthorhombic</td>
</tr>
<tr>
<td>Space Group</td>
<td>P2_{1}2_{1}2_{1}</td>
</tr>
<tr>
<td>Unit Cell: a (Å)</td>
<td>6.0019 (16)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>9.123 (3)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>34.230 (9)</td>
</tr>
<tr>
<td>α (°)</td>
<td>90.000</td>
</tr>
<tr>
<td>β (°)</td>
<td>90.000</td>
</tr>
<tr>
<td>γ (°)</td>
<td>90.000</td>
</tr>
<tr>
<td>V (Å3); Z</td>
<td>1874.3 (9) ; 4</td>
</tr>
<tr>
<td>θ range (°); completeness</td>
<td>2.58 – 70.03 ; 1.000</td>
</tr>
<tr>
<td>Reflections: collected / independent; R\text{int}</td>
<td>20210 / 3569 ; 0.034</td>
</tr>
<tr>
<td>μ (mm-1)</td>
<td>2.639</td>
</tr>
<tr>
<td>R1(F); wR(F2) [I > 2σ(I)]</td>
<td>0.0327; 0.0767</td>
</tr>
<tr>
<td>R1(F); wR(F2) (all data)</td>
<td>0.0390; 0.0790</td>
</tr>
<tr>
<td>GoF(F2)</td>
<td>0.928</td>
</tr>
<tr>
<td>Max. residual e- density</td>
<td>0.146 e- \cdot Å3</td>
</tr>
</tbody>
</table>