Supporting Information

for

Photophysics and Stability of Cyano-Substituted Boradiazaindacene Dyes

Katarzyna Cieślik-Boczula,† Kevin Burgess,#,* Lingling Li,# Binh Nguyen,# Lesley Pandey,† Wim M. De Borggraeve,† Mark Van der Auweraer,† and Noël Boens‡,*

† Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland
Department of Chemistry, Texas A & M University, Box 30012, College Station, TX 77842-3012, USA
† Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200f – bus 02404, 3001 Leuven, Belgium

Figure S1 …………………………………………………………………………………………… S2
Figure S2 …………………………………………………………………………………………… S3
Figure S3 …………………………………………………………………………………………… S4
Figure S4 …………………………………………………………………………………………… S5
Figure S5 …………………………………………………………………………………………… S6
Figure S6 …………………………………………………………………………………………… S7
Figure S7 …………………………………………………………………………………………… S8

* Corresponding authors: Kevin Burgess: Tel +1 979 845 4345; fax: +1 979 845 1881; e-mail: burgess@tamu.edu – Noël Boens: Tel +32 16 327 497; fax: +32 16 327 990; e-mail: Noel.Boens@chem.kuleuven.be
Figure S1. Plot of the Stokes shifts $\Delta \nu$ of 4CN for the solvents of Table 1 versus the Lippert solvent parameter $\Delta f = f(\epsilon) - f(n^2)$. The numbers refer to the solvents of Table 1. The straight line represents the average value of $\Delta \nu = (4.3 \pm 0.5) \times 10^2 \text{ cm}^{-1}$.
Figure S2. **4CN** in acetone. (A) Biexponential fit to ln $A_{511\text{ nm}}$ as a function of the ageing time. (B) Biexponential fit to ln $A_{427\text{ nm}}$ as a function of the ageing time.
Figure S3. (A) Absorption spectra of 2CN in different solvents normalized to 1.0. (B) Corresponding normalized fluorescence emission spectra ($\lambda_{ex}= 488$ nm). Because all the spectra have similar shapes and for better clarity, only a limited number of spectra are shown.
Figure S4. Plots of the Stokes shifts $\Delta \nu$ (in cm$^{-1}$) of 2CN versus the Lippert solvent parameter $\Delta f = f(\varepsilon) - f(n^2)$. The numbers refer to the solvents of Table 3. (A) The straight line represents the best fit to the data: $r = 0.274$, slope = $(1.1 \pm 1.0) \times 10^2$ cm$^{-1}$, intercept = $(4.2 \pm 0.2) \times 10^2$ cm$^{-1}$. (B) The straight line represents the average value of $\Delta \nu = (4.4 \pm 0.4) \times 10^2$ cm$^{-1}$.
Figure S5. Plots of the experimental $\bar{\nu}_{\text{abs}}$ and $\bar{\nu}_{\text{em}}$ (both in cm$^{-1}$) of 2CN as a function of $f(n^2)$. The numbers refer to the solvents of Table 3. The straight lines represent the best fits to $\bar{\nu}_{\text{abs}}$ [$r = 0.830$, slope = $(-4.4 \pm 0.8) \times 10^3$ cm$^{-1}$, intercept = $(20.2 \pm 0.2) \times 10^3$ cm$^{-1}$] and $\bar{\nu}_{\text{em}}$ [$r = 0.910$, slope = $(-4.9 \pm 0.6) \times 10^3$ cm$^{-1}$, intercept = $(19.8 \pm 0.1) \times 10^3$ cm$^{-1}$].
Figure S6. Normalized absorption spectra of \(2\text{CN}\) in DMF (blue solid line) and in DMF + H\(^+\) (black solid line). Corresponding normalized fluorescence emission spectra of \(2\text{CN}\) in DMF (\(\lambda_{\text{ex}} = 430\) nm, blue dotted line) and in DMF + H\(^+\) (\(\lambda_{\text{ex}} = 488\) nm, black dotted line).
Figure S7. (A) Absorption spectra of 2CN in acetone for different ageing times: 5' (a), 10' (b), 15' (c), 20' (d), 30' (e), 40' (f), 50' (g), 60' (h), 70' (i), 85' (j), 100' (k), 115' (l), 135' (m), 195' (n).

(B) Fluorescence emission spectra ($\lambda_{ex} = 430$ nm) of 2CN in acetone for different ageing times: 5' (a), 10' (b), 15' (c), 20' (d), 25' (e), 30' (f), 35' (g), 45' (h), 55' (i), 70' (j), 85' (k), 115' (l), 175' (m).