Photorelease of Tyrosine from Alpha-Carboxy-6-nitroveratryl (αCNV) Derivatives

Supplementary Information

Alexander G. Russell,† Matthew J. Sadler,† Helen J. Laidlaw,† Agustín Gutiérrez-Loriente,† Christopher W. Wharton,‡ David Carteau,§ Dario M. Bassani*§ and John S. Snaith*†

School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, U.K., School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, U.K. and ISM CNRS UMR 5255, Université Bordeaux 1, 33405 Talence, France.

j.s.snaith@bham.ac.uk
d.bassani@ism.u-bordeaux1.fr

† School of Chemistry, University of Birmingham

‡ School of Biosciences, University of Birmingham

§ University Bordeaux 1
Index

Details of kinetics and quantum yield measurements S6-S11

NMR spectra:

Allyl 2-(4-(tert-butyl)phenoxy)-2-(4,5-dimethoxy-2-nitrophenyl)acetate (4):

1H NMR (300 MHz, CDCl$_3$) S12

13C NMR (75 MHz, CDCl$_3$) S13

(2S)-Methyl 3-(4-(2-(allyloxy)-1-(4,5-dimethoxy-2-nitrophenyl)-2-oxoethoxy)phenyl)-2-((tert-butoxycarbonyl)amino)propanoate (5):

1H NMR (300 MHz, CDCl$_3$) S14

13C NMR (75 MHz, CDCl$_3$) S15

2-(4-(tert-Butyl)phenoxy)-2-(4,5-dimethoxy-2-nitrophenyl)acetic acid (6):

1H NMR (300 MHz, d$_6$-acetone) S16

13C NMR (75 MHz, d$_6$-acetone) S17

(1S)-1-Carboxy-2-(4-(carboxy(4,5-dimethoxy-2-nitrophenyl)methoxy)phenyl)ethanaminium 2,2,2-trifluoroacetate (7):

1H NMR (300 MHz, d$_6$-acetone) S18

13C NMR (75 MHz, d$_6$-acetone) S19

2-(3,4-Bis(ethoxycarbonylmethoxy)phenyl)acetic acid ethoxycarbonylmethyl ester:

1H NMR (300 MHz, CDCl$_3$) S20

13C NMR (100 MHz, CDCl$_3$) S21

2-(4,5-Bis(ethoxycarbonylmethoxy-2-nitro)phenyl)acetic acid ethoxycarbonylmethyl ester (8):

1H NMR (300 MHz, CDCl$_3$) S22

13C NMR (75 MHz, CDCl$_3$) S23
Diethyl 2,2′-((4-(1-diazo-2-(2-ethoxy-2-oxoethoxy)-2-oxoethyl)-5-nitro-1,2-phenylene)bis(oxy))diacetate:

1H NMR (300 MHz, CDCl$_3$) S24

13C NMR (75 MHz, CDCl$_3$) S25

2-(4,5-Bis(ethoxycarbonylmethoxy)-2-nitrophenyl)-2-bromoacetic acid ethoxycarbonylmethyl ester (9):

1H NMR (300 MHz, CDCl$_3$) S26

13C NMR (75 MHz, CDCl$_3$) S27

Diethyl 2,2′-((4-(1-(4-((tert-butyl)phenoxy)(carboxy)methyl)-5-nitro-1,2-phenylene)bis(oxy))diacetate (10):

1H NMR (300 MHz, CDCl$_3$) S28

13C NMR (75 MHz, CDCl$_3$) S29

Diethyl 2,2′-((4-(1-(4-(S)-2-((tert-butoxycarbonylamino)-3-methoxy-3-oxopropyl)phenoxy)-2-(2-ethoxy-2-oxoethoxy)-2-oxoethyl)-5-nitro-1,2-phenylene)bis(oxy))diacetate (11):

1H NMR (300 MHz, CDCl$_3$) S30

13C NMR (75 MHz, CDCl$_3$) S31

2,2′-((4-(4-(tert-Butyl)phenoxy)(carboxy)methyl)-5-nitro-1,2-phenylene)bis(oxy))diacetic acid (12):

1H NMR (300 MHz, d$_6$-acetone) S32

13C NMR (75 MHz, d$_6$-acetone) S33

(1S)-2-(4-((4,5-Bis(carboxymethoxy)-2-nitrophenyl)(carboxy)methoxy)phenyl)-1-carboxyethanaminium 2,2,2-trifluoroacetate (13):

1H NMR (300 MHz, D$_2$O) S34

13C NMR (75 MHz, D$_2$O) S35
tert-Butyl 2-(4,5-dimethoxy-2-nitrophenyl)acetate:

\[^1\text{H} \text{NMR (300 MHz, CDCl}_3\text{)}\]
\[^{13}\text{C NMR (75 MHz, CDCl}_3\text{)}\]

tert-Butyl 2-diazo-2-(4,5-dimethoxy-2-nitrophenyl)acetate

\[^1\text{H} \text{NMR (300 MHz, CDCl}_3\text{)}\]
\[^{13}\text{C NMR (75 MHz, CDCl}_3\text{)}\]

tert-Butyl 2-bromo-2-(4,5-dimethoxy-2-nitrophenyl)acetate (14):

\[^1\text{H} \text{NMR (300 MHz, CDCl}_3\text{)}\]
\[^{13}\text{C NMR (125 MHz, CDCl}_3\text{)}\]

(2S)-tert-Butyl 3-(4-(2-(allyloxy)-1-(4,5-dimethoxy-2-nitrophenyl)-2-oxoethoxy)phenyl)-2-((\text{tert-butoxycarbonyl})amino)propanoate (17):

\[^1\text{H} \text{NMR (300 MHz, CDCl}_3\text{)}\]
\[^{13}\text{C NMR (100 MHz, CDCl}_3\text{)}\]

(2S)-Methyl 3-(4-(2-(\text{tert-butoxy})-1-(4,5-dimethoxy-2-nitrophenyl)-2-oxoethoxy)phenyl)-2-(2,2,2-trifluoroacetamido)propanoate (18):

\[^1\text{H} \text{NMR (300 MHz, d}_6\text{-acetone)}\]
\[^{13}\text{C NMR (75 MHz, d}_6\text{-acetone)}\]

(1S)-2-(4-(2-(Allyloxy)-1-(4,5-dimethoxy-2-nitrophenyl)-2-oxoethoxy)phenyl)-1-carboxyethanaminium 2,2,2-trifluoroacetate

\[^1\text{H} \text{NMR (300 MHz, d}_6\text{-acetone)}\]

(2S)-2-(((9H-Fluoren-9-yl)methoxy)carbonyl)amino)-3-(4-(2-(allyloxy)-1-(4,5-dimethoxy-2-nitrophenyl)-2-oxoethoxy)phenyl)propanoic acid (19)

\[^1\text{H} \text{NMR (400 MHz, CDCl}_3\text{)}\]
\[^{13}\text{C NMR (100 MHz, CDCl}_3\text{)}\]
(2S)-2-(((9H-Fluoren-9-yl)methoxy)carbonyl)amino)-3-(4-(2-(tert-butoxy)-1-(4,5-dimethoxy-2-nitrophenyl)-2-oxoethoxy)phenyl)propanoic acid (20)

1H NMR (300 MHz, CDCl$_3$) S49

13C NMR (75 MHz, CDCl$_3$) S50

Mosher’s amide of +/- tyrosine

19F NMR (282 MHz, d$_6$-acetone) S51

Mosher’s amide of tyrosine released by photolysis of Mosher’s amide of 7

19F NMR (282 MHz, d$_6$-acetone) S52
Kinetic measurements

The measurements were performed in aerated H$_2$O or EtOH/H$_2$O (4:1) solutions, as indicated, using a pump – probe setup equipped with a frequency - tripled Nd-YAG laser (BMI, 355 nm, 6 ns pulses) as an excitation source. An intensified CCD (Andor Technologies Instaspec V) or a photomultiplier (Hamamatsu R 446 UR connected to a transient digitizer) was used for detection for the spectral and temporal measurements, respectively.

Kinetic Measurements for Compound 7

Measurements made in water.

![Graph of transient absorption after 10 μs](image)

Transient absorption after 10 μs

![Graph of decay monitored at 420 nm](image)

Decay monitored at 420 nm ($k = 2.4 \times 10^4$ s$^{-1}$)
Chi squared = 5.2555e-3
Parameters: Standard deviations:
A = 2.9284e-2 ΔA = 1.4412e+4
x0 = -9.9136e-6 Δx0 = 20.1604
t0 = 4.0963e-5 Δt0 = 1.5494e-6
const = 1.4108e-2 Δconst = 2.0486e-4

Kinetic Measurements for Compound 13

Measurements made in water.

Transient absorption after 10 µs

Decay monitored at 420 nm ($k = 2.3 \times 10^4 \text{ s}^{-1}$)
Chi squared = 3.7828e-3

Parameters:
- A = 3.3573e-2
- x0 = -6.2146e-6
- t0 = 4.3683e-5
- const = 1.1171e-2

Standard deviations:
- ΔA = 4436.0902
- Δx0 = 5.7719
- Δt0 = 1.1500e-6
- Δconst = 1.8916e-4

Kinetic Measurements for Compound 5

Measurements made in ethanol/water (4:1)

![Graph showing transient absorption after 1 µs]

Decay monitored at 420 nm ($k = 1.3\times10^5$ s$^{-1}$)

Chi squared = 1.3074e-2

Parameters:
- A = 3.7668e-2
- x0 = -2.0372e-6
- t0 = 7.6637e-6
- const = 6.4542e-3

Standard deviations:
- ΔA = 2.9417e+4
- Δx0 = 5.9850
- Δt0 = 4.0326e-7
- Δconst = 1.6965e-4
Kinetic Measurements for Compound 11

Measurements made in ethanol/water (4:1)

Transient absorption after 1 µs

Decay monitored at 420 nm \((k = 7.0 \times 10^4 \text{ s}^{-1}) \)

Chi squared = 3.1589e-3

Parameters:

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
<th>Standard deviations:</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2.3738e-2</td>
<td>(\Delta A = 3.7685e+4)</td>
</tr>
<tr>
<td>x0</td>
<td>-1.3965e-5</td>
<td>(\Delta x0 = 22.5644)</td>
</tr>
<tr>
<td>t0</td>
<td>1.4214e-5</td>
<td>(\Delta t0 = 1.0238e-6)</td>
</tr>
<tr>
<td>const</td>
<td>7.7570e-3</td>
<td>(\Delta \text{const} = 1.1187e-4)</td>
</tr>
</tbody>
</table>
Quantum yield determination

Quantum yields were determined using an optical bench consisting of a 0101 Schoeffel lamp housing equipped with a xenon-mercury lamp (150 W) and a 77250 Oriel monochromator. Irradiations were carried out in aerated water at 20 °C at 365 nm (band-width of 10 nm) and followed by HPLC analysis.

The photon flux was determined using potassium ferrioxalate actinometry (Hatchard – Parker actinometer):\(^1\) A 3.0 mL solution of ferrioxalate (0.006 M) in H\(_2\)SO\(_4\) (0.05M) was irradiated and the moles of photoproduct were determined from the change in optical density at 510 nm and the extinction coefficient (11100 M\(^{-1}\) cm\(^{-1}\)) 1 h after addition of 0.1 % of 1,10-phenanthroline to the photolyzed solution. The known quantum yield of photoproduct (1.26)\(^2\) was used to calculate the photon flux (I = 5.48x10\(^{-7}\) E/min).

1. HPLC Analysis of Tyr.

Conditions: 70:30 acetonitrile:water (isocratic), 1 mL/min, detector at 270 nm.

Calibration curve:

![Graph showing calibration curve](image)

\[
\text{Area (270 nm)} = \frac{\text{[Tyr]}}{\text{M}} \times 3.175.5518 + 9674.1127 \\
\text{[Tyr] / M} = 1.4036e+9 \\
\text{Correlation coefficient:} = 0.9944 \\
\text{Significance of correlation:} = 18.3480 \%
\]
2. Quantum yield determination for compound 7

Solution in water at 1.389 mM, irradiated at 365 and analyzed at 10 min intervals.

Quantum yield = 0.19

3. Quantum yield determination for compound 13

Solution in water at 1.095 mM, irradiated at 365 and analyzed at 10 min intervals.

Quantum yield = 0.11

