Photostabilization of Endogenous Porphyrins: Excited State Quenching by Fused Ring Cyanoacrylates.

Steffen Jockusch,*a Craig Bondaᵇ and Shengkui Huᵇ

ᵃ Department of Chemistry, Columbia University, New York, NY 10027, USA.
ᵇ The HallStar Company, Chicago, IL 60606, USA.

Fig. S1 Determination of the bimolecular quenching rate constant k_q^S of quenching of PpIX and Pp-MelX fluorescence by molecular oxygen from the slope of the plot of the inverse fluorescence lifetime vs. the dissolved oxygen concentration. $\lambda_{ex} = 496$ nm; $\lambda_{em} = 630$ nm.
Fig. S2 Determination of the bimolecular quenching rate constants k_q^T of quenching of PpIX and Pp-MeIX triplet states by molecular oxygen from the slope of the plot of the inverse triplet lifetime (monitored at 440 nm) vs. the dissolved oxygen concentration. $\lambda_{ex} = 532$ nm.
Fig. S3 Determination of the bimolecular quenching rate constants k_q of quenching of singlet oxygen ($^1\text{O}_2$) by 1 and 2 from the slope of the plot of the inverse singlet oxygen lifetime (monitored by phosphorescence at 1270 nm) vs. the concentration of 1 and 2. Tetraphenylporphyrin (TPP) was used as $^1\text{O}_2$ sensitizer with $\lambda_{\text{ex}} = 532$ nm.