Electronic Supplementary Information.

Anion Exchange Nanofiber Materials Activated by Daylight with a Dual Antibacterial Effect†

L. Plíštil,ab P. Henke, a P. Kubát,c and J. Mosinger*ad

a Faculty of Sciences, Charles University in Prague, Hlavova 2030, 128 43 Prague 2, Czech Republic, phone: +420 221 951 255, e-mail: mosinger@natur.cuni.cz

b Center of Applied Bioimplantology, Královské Vinohrady University Hospital, Šrobárova 1150/50, 100 34, Prague 10, Czech Republic.

c J. Heyrovský Institute of Physical Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Dolejškova 3, 182 23 Prague 8, Czech Republic.

d Institute of Inorganic Chemistry, v.v.i., Academy of Sciences of the Czech Republic, 250 68 Řež, Czech Republic.

Figure S1. The time course of absorption spectra of 64 μM I\textsuperscript{-} in 30 mL H\textsubscript{2}O after 0 (a), 30 (b), and 60 (c) min of immersion in AE (6 cm\textsuperscript{2}, 4.0 mmol/g) saturated with I\textsuperscript{-} ions; the arrows indicate absorption changes.
Figure S2. ACA measurement of samples 1 (left, 130°), 2, and 3 (right, \(\leq 5^\circ\)).

Figure S3. Time-resolved phosphorescence of \(\text{O}_2(1\Delta_g)\) at 1,270 nm after 308 nm pulsed laser excitation in air-saturated D\(_2\)O for TPPS-AE (TPPS/IES = 0.01).

Figure S4. Post-irradiation effect. \textit{E. coli} colonies on agar plates inoculated from the surface of TPPS-AE (a), I-AE (b), and I-TPPS-AE (c) first illuminated by a solar simulator (400 W, 15 min) and then inoculated with \textit{E. coli} and stored in the dark for 1 h.