Supporting Information

Synthesis and Self-assembly of Amphiphilic Semi-brush and Dual Brush Block Copolymers.

Daniel Zehm, André Laschewsky,* Peggy Heunemann, Michael Gradzielski,* Sylvain Prévost, Hua Liang, Jürgen P. Rabe and Jean-François Lutz

a Universität von Potsdam, Institut für Chemie, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany, laschews@rz.uni-potsdam.de
b Technische Universität Berlin, Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Straße des 17. Juni 124, Sekr. TC7, 10623 Berlin, Germany, michael.gradzielski@tu-berlin.de
c Institut Max von Laue-Paul Langevin (ILL), F-38042 Grenoble Cedex 9, France
d Helmholtz-Zentrum Berlin für Materialien und Energie, Dept SF2 Magnetism, Liese-Meitner Campus, Glienicker Straße 100, D-14109 Berlin, Germany
e Humboldt-Universität zu Berlin, Department of Physics, Newtonstr. 15, 12489 Berlin, Germany
f Fraunhofer Institut für Angewandte Polymerforschung IAP, Geiselbergstr. 69, 14476 Potsdam-Golm, Germany
Scheme S1: shape of an amphiphilic dual brush with unequal graft lengths (a) in a non-selective solvent, and (b) in a selective solvent for the shorter grafts.

Table S1. Monofunctional RAFT chain transfer agents (CTA) used, and reactive macroRAFTagents (brush precursors) prepared.

CTA3

poly(BrMPAEA)
Synthesis of BrMPAEA. Acryloylchloride (4.75 mL, 58 mmol) in dry ethyl acetate (15 mL) was added dropwise to a stirred solution of ethanolamine (3.0 g, 49 mmol) and NaOH (2.32 g in 10 mL H₂O) in ethyl acetate (25 mL dry) at 0 °C, and subsequently stirred overnight at ambient temperature. The organic phase was separated, dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by column chromatography (ethyl acetate / methanol 10:1) to afford 2.42 g of the intermediate N-(2-hydroxyethyl)acrylamide. To this colorless oil, dry THF (40 mL) and triethylamine (4.4 mL, 31.5 mmol) were added. After stirring for 10 min at 0°C, as solution of 2-bromoisobutyryl bromide (3.1 mL, 25.2 mmol) in dry THF (15 mL) was added dropwise and the reaction was allowed to proceed overnight. The mixture was successively extracted with acidic ice-water (0.5M HCl), aq NaHCO₃, and ethyl acetate. The combined organic phases were dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by column chromatography (hexane / ethyl acetate 1:1, \(R_f = 0.15 \)) to afford the desired product as colorless oil. Yield: 1.67 g (13 % over two steps).

Elemental analysis (C₉H₁₄BrNO₃, \(M_r = 264.11 \text{ g/mol} \)): Calc: C 40.93, H 5.34, N 5.30; Found: C 41.13, H 4.83, N 5.21.

EI-MS (positive ions): 265 (M⁺+) .

\(^1\)H NMR (300 MHz, CDCl₃): \(\delta \) (ppm): 1.90 (s, 6 H, -CH₃), 3.64 (q, \(J = 5.45 \text{ Hz} \), 2 H, -CON-CH₂-), 4.29 (t, \(J = 5.45 \text{ Hz} \), 2 H, -CH₂-OOC-), 5.65 (dd, \(J = 10.11, 1.54 \text{ Hz} \), 1 H, CH=CON- (E)), 6.1 (dd, \(J = 17.02, 10.11 \text{ Hz} \), 1 H, CH=C-CON- (Z)), 6.26 (dd, \(J = 17.02, 1.54 \text{ Hz} \), 1 H, =CH-CON-), 6.3 (s br, 1 H, NH).

\(^1\)C-NMR (75 MHz, CDCl₃) \(\delta \) (ppm): 31.0 (-CH₃), 38.9 (NH-CH₂-), 64.8 (CH₂-O), 127.4 (=CH), 130.9 (=CH₂), 166.5 (CONH), 172.0 (-COO-). IR (KBr, selected bands, in cm⁻¹): 3283, 2976, 1734, 1657, 1540, 1463, 1272, 1159, 1106, 1026, 983, 958.

Table S2: Synthesis and characterization of RAFT-polymerized inimer (conditions: 65°C, initiated by AIBN).

<table>
<thead>
<tr>
<th>polymer (^a)</th>
<th>RAFT agent</th>
<th>conv. ([%]/[\text{h}]) (^b)</th>
<th>theory (^c)</th>
<th>SEC analysis</th>
<th>spectroscopic analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (BrMPAEA) (_\text{62})</td>
<td>CTA3</td>
<td>31/14.5</td>
<td>17</td>
<td>(M_n \times 10^3) ([\text{g mol}^{-1}])</td>
<td>(M_n \times 10^3) ([\text{g mol}^{-1}])</td>
</tr>
</tbody>
</table>

\(^a\) Conditions for poly(BrMPAEA): \([\text{Monomer}]/[\text{CTA}]/[\text{Initiator}] = 200/1/0.1 \text{ in THF}; \)

\(^b\) Determined by \(^1\)H-NMR analysis of the crude product.

\(^c\) Calculated according to equation: \(M_{n,\text{theor.}} = (\text{conversion} \times M_{n,\text{monomer}} \times [\text{M}] / [\text{CTA}]) + M_{n,\text{CTA}} \).

\(^d\) Eluent NMP, RI detection, calibrated by polystyrene standards.

\(^e\) Calculated by end group analysis via UV band (\(\lambda = 309 \text{ nm} \), \(\varepsilon_{\text{CTA3}} = 14,700 \text{ L·mol}^{-1·cm}^{-1} \text{ in CH}_2\text{Cl}_2 \)).
Fig. S1.
A) 1H NMR spectra of poly(ClPEA) in CDCl$_3$.
B) TGA plot (continuous line) of poly(ClPEA), and derivative DTG plot (dashed line) of poly(ClPEA).

Fig. S2.
A) SEC traces of: (i, continuous line) (PEG)$_{858}$, (ii, dashed line) (PEG)$_{429}$-b-(ClPEA)$_{470}$-b-(PEG)$_{429}$, (iii, continuous line) TriB-2, and (iv, dashed line) TriB-3.
B) SEC traces of (i, continuous line) (ClPEA)$_{680}$, (ii, dashed line) (PEG)$_{375}$-b-(ClPEA)$_{680}$-b-(PEG)$_{375}$, and (iii, continuous line) TriB-4 in THF as eluent.
Fig. S3. DSC traces of studied polymers:
A) (i) (ClPEA), (ii) (PEGA)$_{192}$-b-(ClPEA)$_{72}$-b-(PEGA)$_{192}$, (iii) TriB-1;
B) (i) (PEGA)$_{450}$-b-(ClPEA)$_{450}$-b-(PEGA)$_{450}$ (ii) TriB-2 (iii) TriB-3.

Fig. S4. A) 1H NMR spectra of TriB-1 in D$_2$O.
B) Dynamic light scattering analysis of 0.1 wt% aqueous dispersions at 25 °C of
(i) (PEGA)$_{192}$-b-(ClPEA)$_{72}$-b-(PEGA)$_{192}$;
(ii) TriB-1, prepared by protocol A: Volume fraction distribution of aggregates' hydrodynamic diameter.

SANS Data Analysis
In a first approach the data were analyzed in a model-independent way. Here we applied the
Guinier approximation (eq. S1) from which we can derive the radius of gyration, R_g, and the
scattering intensity extrapolated to zero scattering angle, $I(0)$.

$$I(q) = I(0) \cdot \exp\left(-q^2 \cdot R_g^2 / 3\right)$$
\quad (equation S1)
where $I(0)$ is directly related to the molecular weight M_w of the aggregates by:

$$I(0) = \Phi \cdot (SLD_p - SLD_0)^2 \cdot \frac{M_w}{\rho_p \cdot N_{Av}} \quad \text{(equation S2)}$$

Here Φ is the volume fraction of the dispersed particles, SLD_p and SLD_0 the scattering length densities of particle and solvent, ρ_p the particle density, and N_{Av} the Avogadro's number.

From the molecular weight one can then directly calculate the radius of a compact aggregate (neglecting any solvation) by taking into account the polymer density assumed to be 1.13 and 1.05 g/ml for the semi-brush and the dual brush copolymer, respectively.

SLS Data Analysis

Fig. S5. *Guinier- a), b), c) and Berry-Plot d) of SLS-data for a) precursor (PEGA)$_{192}$-b-(CIPEA)$_{72}$-b-(PEGA)$_{192}$ in D$_2$O and the derived dual brush TriB-1 b) in D$_2$O and c), d) in D$_2$O/DMF (10/1) at 25 °C; used ! and neglected ∀ data-points for the fit*

Static light scattering data were analysed by means of the Guinier approximation according to eq. S1. Concerning the validity of Guinier approximation fit of TriB-1 in D$_2$O/DMF (10/1) was done only for low scattering angles due to its non-linear curve behavior. Repeating measurements of this sample appeared always in the same manner.
Table S3: Molecular weight Mw and radius of gyration Rg obtained via SLS-analyses of precursor \((\text{PEGA})_{192}\text{-b-(ClPEA)}_{72}\text{-b-(PEGA)}_{192}\) and the derived dual brush TriB-1

<table>
<thead>
<tr>
<th>Plot</th>
<th>polymer</th>
<th>Mw((q^2) / \text{ g/mol})</th>
<th>Rg / nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guinier</td>
<td>((\text{PEGA}){192}\text{-b-(ClPEA)}{72}\text{-b-(PEGA)}_{192})</td>
<td>3.40E+06</td>
<td>76.1</td>
</tr>
<tr>
<td>Guinier</td>
<td>TriB-1 in D(_2)O</td>
<td>2.45E+07</td>
<td>60.9</td>
</tr>
<tr>
<td>Guinier</td>
<td>TriB-1 in D(_2)O/DMF (10/1)</td>
<td>4.84E+09</td>
<td>226.3</td>
</tr>
<tr>
<td>Guinier (larger q-range)</td>
<td>TriB-1 in D(_2)O/DMF (10/1)</td>
<td>3.13E+08</td>
<td>102.1</td>
</tr>
<tr>
<td>Berry</td>
<td>TriB-1 in D(_2)O/DMF (10/1)</td>
<td>3.10E+09</td>
<td>265.2</td>
</tr>
</tbody>
</table>

Fig. S6. SFM height image of the semi-brush block copolymer precursor \((\text{PEGA})_{375}\text{-b-(ClPEA)}_{680}\text{-b-(PEGA)}_{375}\).