Supporting Information

Modification of pyridine-based conjugated polymer films via Lewis acid: halochromism, characterization and macroscopic gradation patterning

Shotaro Hayashi*, Atsushi Asano, Toshio Koizumi

Department of Applied Chemistry, National Defense Academy,

1-10-20 Hashirimizu, Yokosuka, Kanagawa 239-9696, Japan

Experimental

Materials

Dry solvents, 37% HCl solution (Wako) and tetrafluoroborate-diethylether complex (BF_3-OEt_2) (Wako) were used as received. 2,5-dibromopyridine, 9,9-Dioctylfluorene-2,7-diboronic acid bis(1,3-propanediol) ester, tetrakis(triphenylphospine) palladium, $(Pd(PPh_3)_4)$, were used as received. 2,5-Bis(5-bromothiophen-2-yl)pyridine was synthesized according to the previous work.^{S1}

Synthesis of **PP** by Suzuki-Miyaura Coupling Polymerization

2,5-Dibromopyridine (190 mg, 0.80 mmol),9,9-dioctylfluorene-2,7-diboronic acid bis(1,3-propanediol) ester (446 mg, 0.80 mmol),Pd(PPh₃)₄ (24 mg, 0.02mmol), tetrabutylammonium bromide (3 mg) were dissolved in 8 ml of dry toluene under argon. To the solution were added K₂CO₃ (aq) (2.0 M, 4 ml). After stirred for 48 h at 100 °C, the reaction mixture was reprecipitated into a large amount of methanol. **PP**was collected by filtration, dried under vacuum, and obtained as a pale-yellow powder (460 mg). ¹HNMR (300 MHz, CDCl₃): δ 9.1 (*Ar-H*, s),8.1-7.5 (*Ar-H*, br), 2.11

 $(CH_2(CH_2)_6CH_3, br)$, 1.25-0.77 $(CH_2(CH_2)_6CH_3, br)$.¹³CNMR (75.45 MHz, CDCl₃): δ 152.2, 148.2, 138.1, 136.7, 135.0, 129.2, 129.0, 128.9, 128.7, 127.7, 127.6, 125.4, 124.5, 120.7, 120.6, 120.4, 117.3, 55.6, 40.5, 31.8, 30.1, 29.3, 23.9, 22.7, 14.2.GPC (polystyrene standard): $M_n = 17,500$, $M_w = 38,800$, $M_w/M_n = 2.22$.

Synthesis of **PTP** by Suzuki-Miyaura Coupling Polymerization

2,5-Bis(5-bromothiophen-2-yl)pyridine (20 mg, 0.05mmol),9,9-dioctylfluorene-2,7-diboronic acid bis(1,3-propanediol) ester (29 mg, 0.05mmol),Pd(PPh₃)₄ (3 mg, 0.0025mmol), tetrabutylammonium bromide (3 mg) were dissolved in 1 ml of dry toluene under argon. To the solution were added K₂CO₃ (aq) (2.0 M, 0.5 ml). After stirred for 72 h at 100 °C, the reaction mixture was reprecipitated into a large amount of methanol. **PTP**was collected by filtration, dried under vacuum, and obtained as a pale-orange powder (31 mg). ¹HNMR (300 MHz, CDCl₃): δ 8.9 (*Ar-H*, s),7.9-7.2 (*Ar-H*, br), 2.05 (CH₂(CH₂)₆CH₃, br), 1.25-0.77 (CH₂(CH₂)₆CH₃, br). ¹³CNMR (75.45 MHz, CDCl₃): δ 152.4, 140.9, 129.2, 129.0, 128.9, 128.7, 127.7, 127.6, 125.4, 124.5, 120.7, 120.6, 120.4, 119.1, 55.6, 40.5, 31.8, 30.1, 29.3, 23.9, 22.7, 14.2. GPC (polystyrene standard): $M_n = 5,200$, $M_w = 8,200$, $M_w/M_n = 1.58$.

Measurement

Liquid-state ¹H NMR spectra were recorded on a JEOL EX-300 spectrometer. High-resolution solid-state ¹³C nuclear magnetic resonance spectra were measured using a Varian NMR systems 400WB spectrometer operating at 100.57MHz for ¹³C and 399.94 MHz for ¹H, and obtained by the combined use of cross polarization (CP) and magic-angle spinning (MAS) with ¹H high-power dipolar decoupling of 60 kHz under the MAS of 5 kHz. The utilized CP contact time was 2 ms. ¹⁹F MAS NMR spectra were measured using the same spectrometer operating at 376.25 MHz for ¹⁹F, and the 45 degree pulse of 7.5 µs was used under the MAS of 23 kHz. To obtain the ¹⁹F spin-lattice relaxation time (T_1^{F}), the conventional inversion-recovery method was employed with 90 degree pulse of 15 µs and 180 degree pulse of 33 µs. ¹³C chemical shifts were measured relative to TMS (tetramethylsilane) using the methine carbon signal at 29.47 ppm for solid adamantane as an external standard. ¹⁹F chemical shifts were relative to CFCl₃ referenced externally to the CF₂ signal of Teflon at -122 ppm. ^{S2} UV-vis absorption spectra were obtained on a Shimadzu UV-1800 spectrophotometer.

Photoluminescence (PL) spectra were obtained on a Shimadzu RF-5300PC spectrophotomerter. GPC analyses were performed by a Shimadzu Prominence GPC system (Shim-pack GPC 803C column), using chloroform as the eluent after calibration with polystyrene standards.

Chemical Shift from TMS /ppm

Fig. S1. Solid-state ¹³C CPMAS NMR spectra of **PP** films.Symbol * represents the artificially appeared signal on MAS experiments, called as a spinning side band (SSB) of the intrinsic aromatic carbon signals observed from 110 to 160 ppm. Assignments are also depicted on figure.

Fig. S2. Plots of the normalized ¹⁹F peaks at -147 ($\textcircled{\bullet}$) and -152 ppm ($\textcircled{\bullet}$) for the inversion-recovery method to obtain T_1^F value. The solid lines are the least-square fit to the conventional equation, $M(t) = 1 - p \cdot \exp(-t/T_1^F)$: M(t) is normalized magnetization. The value of parameter *p* ideally equals 2.

References

S1) Y. K. Jung, J. Lee, S. K. Lee, H-J. Cho, H-K. Shim, J. Polym. Sci: Part A: Polym. Chem. 2006, 44, 4611-4620.

S2) B. Fuchs, U. Scheler, *Macromolecules*, 2000, **33**, 120–124.