Supporting Information

Modification of pyridine-based conjugated polymer films via Lewis acid: halochromism, characterization and macroscopic gradation patterning

Shotaro Hayashi*, Atsushi Asano, Toshio Koizumi

*Department of Applied Chemistry, National Defense Academy,
1-10-20 Hashirimizu, Yokosuka, Kanagawa 239-9696, Japan*

Experimental

Materials

Dry solvents, 37% HCl solution (Wako) and tetrafluoroborate-diethylether complex (BF₃-OEt₂) (Wako) were used as received. 2,5-dibromopyridine, 9,9-Dioctylfluorene-2,7-diboronic acid bis(1,3-propanediol) ester, tetrakis(triphenylphosphine) palladium, (Pd(PPh₃)₄), were used as received. 2,5-Bis(5-bromothiophen-2-yl)pyridine was synthesized according to the previous work. S1

Synthesis of PP by Suzuki-Miyaura Coupling Polymerization

2,5-Dibromopyridine (190 mg, 0.80 mmol), 9,9-dioctylfluorene-2,7-diboronic acid bis(1,3-propanediol) ester (446 mg, 0.80 mmol), Pd(PPh₃)₄ (24 mg, 0.02 mmol), tetrabutylammonium bromide (3 mg) were dissolved in 8 ml of dry toluene under argon. To the solution were added K₂CO₃ (aq) (2.0 M, 4 ml). After stirred for 48 h at 100 °C, the reaction mixture was reprecipitated into a large amount of methanol. PP was collected by filtration, dried under vacuum, and obtained as a pale-yellow powder (460 mg). ¹HNMR (300 MHz, CDCl₃): δ 9.1 (Ar-H, s), 8.1-7.5 (Ar-H, br), 2.11
(CH₂(CH₂)₆CH₃, br), 1.25-0.77 (CH₂(CH₂)₆CH₃, br).¹³CNMR (75.45 MHz, CDCl₃): δ 152.2, 148.2, 138.1, 136.7, 135.0, 129.2, 129.0, 128.9, 128.7, 127.7, 127.6, 125.4, 124.5, 120.7, 120.6, 120.4, 117.3, 55.6, 40.5, 31.8, 30.1, 29.3, 23.9, 22.7, 14.2. GPC (polystyrene standard): Mₙ = 17,500, Mₘ = 38,800, Mₘ/Mₙ = 2.22.

Synthesis of PTP by Suzuki-Miyaura Coupling Polymerization

2,5-Bis(5-bromothiophen-2-yl)pyridine (20 mg, 0.05mmol), 9,9-dioctylfluorene-2,7-diboronic acid bis(1,3-propanediol) ester (29 mg, 0.05mmol), Pd(PPh₃)₄ (3 mg, 0.0025mmol), tetrabutylammonium bromide (3 mg) were dissolved in 1 ml of dry toluene under argon. To the solution were added K₂CO₃ (aq) (2.0 M, 0.5 ml). After stirred for 72 h at 100 °C, the reaction mixture was reprecipitated into a large amount of methanol. PTP was collected by filtration, dried under vacuum, and obtained as a pale-orange powder (31 mg). ¹HNMR (300 MHz, CDCl₃): δ 8.9 (Ar-H, s), 7.9-7.2 (Ar-H, br), 2.05 (CH₂(CH₂)₆CH₃, br), 1.25-0.77 (CH₂(CH₂)₆CH₃, br). ¹³CNMR (75.45 MHz, CDCl₃): δ 152.4, 140.9, 129.2, 129.0, 128.9, 128.7, 127.7, 127.6, 125.4, 124.5, 120.7, 120.6, 120.4, 119.1, 55.6, 40.5, 31.8, 30.1, 29.3, 23.9, 22.7, 14.2. GPC (polystyrene standard): Mₙ = 5,200, Mₘ = 8,200, Mₘ/Mₙ = 1.58.

Measurement

Liquid-state ¹H NMR spectra were recorded on a JEOL EX-300 spectrometer. High-resolution solid-state ¹³C nuclear magnetic resonance spectra were measured using a Varian NMR systems 400WB spectrometer operating at 100.57MHz for ¹³C and 399.94 MHz for ¹H, and obtained by the combined use of cross polarization (CP) and magic-angle spinning (MAS) with ¹H high-power dipolar decoupling of 60 kHz under the MAS of 5 kHz. The utilized CP contact time was 2 ms. ¹⁹F MAS NMR spectra were measured using the same spectrometer operating at 376.25 MHz for ¹⁹F, and the 45 degree pulse of 7.5 μs was used under the MAS of 23 kHz. To obtain the ¹⁹F spin-lattice relaxation time (T₁ F), the conventional inversion-recovery method was employed with 90 degree pulse of 15 μs and 180 degree pulse of 33 μs. ¹³C chemical shifts were measured relative to TMS (tetramethylsilane) using the methine carbon signal at 29.47 ppm for solid adamantane as an external standard. ¹⁹F chemical shifts were relative to CFCI₃ referenced externally to the CF₂ signal of Teflon at -122 ppm. ¹²UV-vis absorption spectra were obtained on a Shimadzu UV-1800 spectrophotometer.
Photoluminescence (PL) spectra were obtained on a Shimadzu RF-5300PC spectrophotometer. GPC analyses were performed by a Shimadzu Prominence GPC system (Shim-pack GPC 803C column), using chloroform as the eluent after calibration with polystyrene standards.

Fig. S1. Solid-state 13C CPMAS NMR spectra of PP films. Symbol * represents the artificially appeared signal on MAS experiments, called as a spinning side band (SSB) of the intrinsic aromatic carbon signals observed from 110 to 160 ppm. Assignments are also depicted on figure.
Fig. S2. Plots of the normalized 19F peaks at -147 (●) and -152 ppm (○) for the inversion-recovery method to obtain T_1^F value. The solid lines are the least-square fit to the conventional equation, $M(t) = 1 - p \cdot \exp (-t/T_1^F)$: $M(t)$ is normalized magnetization. The value of parameter p ideally equals 2.

References
