Electronic Supplementary Information (ESI)

Aqueous RAFT/MADIX Polymerisation of N-Vinyl Pyrrolidone at Ambient Temperature.

Aymeric Guinaudeau, Stéphane Mazières, D. James Wilson and Mathias Destarac

Summary of the Supplementary Information document

I. Materials, Synthesis, Characterisation 2
II. 1NMR spectroscopy analysis of PVP-XA1 4
III. MALDI-TOF mass spectrometry analysis of PVP-XA1 5

aUniversité Paul Sabatier, Laboratoire Hétérochimie Fondamentale et Appliquée, UMR-CNRS 5069, Bât 2R1, 118, route de Narbonne, 31062 Toulouse Cedex 9, France
bRhodia Opérations, Centre de Recherches et Technologies d’Aubervilliers, 52 rue de la Haie Coq, 93308 Aubervilliers Cedex, France

To whom correspondence should be addressed:
E-mail: destarac@chimie.ups-tlse.fr
Materials. N-Vinylpyrrolidone (NVP, Acros, 98%) was dried over anhydrous magnesium sulphate and distilled under reduced pressure. 2,2’-Azobisisobutyronitrile (AIBN, Fluka) was recrystallized three times in methanol. Ethanol (EtOH, Normapur), t-butyl hydroperoxide (tBuOOH, Aldrich, 70 wt. % in water) and L(+) Ascorbic Acid (AscAc, Acros, 99%) were used as received. O-ethyl-S-(1-methoxycarbonyl)ethylthiokarbonate (XA1) and Acrylamide (Am, 50 wt. % in water) were supplied by Rhodia and used as received.

Redox-initiated, aqueous RAFT/MADIX polymerisation of NVP. A typical polymerisation was performed as follows: XA1 (122 mg, 5.8 × 10⁻⁴ mol), NVP (5 g, 4.5 × 10⁻² mol), distilled water (2.5 mL) and t-BuOOH (85 mg, 6.6 × 10⁻⁴ mol) were placed in a 15-mL Schlenk flask. The polymerisation mixture was degassed by purging with ultra-high purity argon during 20 minutes. AscAc (115 mg, 6.5 × 10⁻⁴ mol) was added one-pot under a stream of argon. The reaction was stopped after 24 h at room temperature. NVP conversion was determined by ¹H NMR (97%). Molecular weight and dispersity were determined by SEC in DMF/LiCl with PMMA standards (Mₙ,SEC = 14 600 g.mol⁻¹, D = 1,30).

Redox-initiated RAFT/MADIX polymerisation of acrylamide. An acrylamide prepolymer was synthesized as follows to perform a further block copolymerisation: XA1 (220 mg, 1.1 × 10⁻³ mol), Ethanol (EtOH, 3.3 g, 7.2 × 10⁻² mol), Am (10 g, 7 × 10⁻² mol), distilled water (2.5 mL) and t-BuOOH (171 mg, 1.3 × 10⁻³ mol) were placed in a 15-mL Schlenk flask. The polymerisation mixture was degassed by purging with ultra-high purity argon during 20 mn. AscAc (182 mg, 1.2 × 10⁻³ mol) was added one-pot under a stream of argon. The reaction was stopped after 24h at room temperature. The monomer conversion reached 99% (determined by ¹H NMR). Ethanol was then evaporated under reduced pressure. Molecular weight and dispersity were determined by ¹H NMR (Mₙ,RMN = 1200 g.mol⁻¹) and by SEC in DMF/LiCl with PMMA standards (Mₙ,POE = 3600 g.mol⁻¹, D = 1,07).

Redox-initiated RAFT/MADIX block copolymerisation of NVP. Pam (prepared according to the procedure described above) (300 mg, 6 × 10⁻³ mol), t-BuOOH (19 mg, 1.5 × 10⁻⁴ mol), distilled water (1,3 mL) and NVP (0.5 g, 3.5 × 10⁻³ mol) were placed in a 15-mL Schlenk flask. The polymerisation mixture was degassed by purging with ultra-high purity argon during 20 mn. AscAc (23 mg, 1.3 × 10⁻⁴ mol) was added one-pot under a stream of argon. The reaction was stopped after 8 h of stirring at room temperature. Molecular weight and dispersity were determined by SEC in DMF/LiCl with PMMA standards (Mₙ,SEC = 12200 g.mol⁻¹, D = 1,25).

PVP purification. PVP was isolated by diluting the sample in dichloromethane and precipitating in diethylether (three times). The polymer was then dried under vacuum at 40°C during 10 h.

Characterization

¹H-NMR were recorded on Bruker AMX 300, at 300 MHz, in D₂O. A SEC system, comprising two Shodex K-805L columns (8mm*300mm, 13µm), a UV detector and a RI detector using DMF/LiCl (0,1 N) as the eluent at 40°C with a flow rate of 1mL.min⁻¹ was used. This system was calibrated using narrow poly(methyl methacrylate) standards ranging from 900 to 625 000 g.mol⁻¹. Toluene was used as a flow marker.
MALDI-TOF MS measurements were performed on an Applied Biosystems Voyager System 4243. Positive-ion spectra were acquired in the reflector mode. The matrix was 4-(4-nitrophenylazo)resorcinol. There was no cationisation agent. The polymer sample and the matrix were dissolved in dichloromethane and premixed in a 1:10 ratio.
$DP_{n,\text{RMN}} = \frac{e+j}{i} = \frac{i + (a+c+f) - 3i}{3}$

Fig. S1 1H NMR spectrum of a PVP synthesized by XA1-mediated RAFT/MADIX polymerisation in water at 25°C, reaction medium (left) and purified polymer (right)
Fig S2 MALDI-TOF mass spectrum of a PVP synthesized by XA1-mediated RAFT/MADIX polymerisation in water at 25°C for 24h, then left in the reaction medium for 5 additional days. $M_n_{\text{NMR}}=1600$ g.mol$^{-1}$. A = $\text{CH}_3OCOCH_2CH_-(\text{NVP})_{n-1}-CH=CH(C_6H_5NO)$ (Na^+), B = $\text{CH}_3OCOCH_2CH-(\text{NVP})_{n-1}-CH=CH(C_6H_5NO)$ (K^+), C = $\text{CH}_3OCOCH_2CH-(\text{NVP})_{n-1}-S(C=\text{S})OCH_2CH_3$ (K^+).