Electronic Supplementary Information

Conformational Change of a Amylose Derivative in Chiral Solvents: Amylose Tris(n-butylcarbamate) in Ethyl Lactates

Shota Arakawa, Ken Terao,* Shinichi Kitamura, and Takahiro Sato

**Fig. S1.** Polymer mass concentration $c$ dependence of $(Kc/R_0)^{1/2}$ for indicated ATBC samples in $D$-EL (red circles), $DL$-EL (black triangles), and $L$-EL (blue triangles) at 25 °C.

**Cross Sectional Plot for a Core-Shell Cylinder Model.** To demonstrate the negative $d^2$ for ATBC in ELs, we calculated $P(q)$ for a core-shell cylinder with the length $L$ by

$$P(q) = \int_0^{2\pi} \left[ d_i^2 \Delta \rho_i G(q, \theta, d_i) + d_o^2 \Delta \rho_o G(q, \theta, d_o) - d_i^2 \Delta \rho_i G(q, \theta, d_o) \right] \frac{\sin \theta \, d \theta}{(\Delta \rho_i - \Delta \rho_o) d_i^2 + \Delta \rho_o d_o^2}$$

with

$$G(q, \theta, d_x) = \frac{\sin \left[ (qL/2) \cos \theta \right]}{(qL/2) \cos \theta} J_1 \left[ (qd_x/2) \sin \theta \right]$$

**S1**
where \(d_i\) and \(d_o\) are the diameter of the inner (or core) and outer (or shell) cylinders, \(\Delta \rho_i\) and \(\Delta \rho_o\) the corresponding excess electron densities. The obtained \(\ln[q \, P(q)]\) from eq S1 with \(L = 40\) nm, \(d_i = 0.8\) nm, \(d_o = 1.2\) nm, \(\Delta \rho_i = 1.1\), and \(\Delta \rho_o = 0.963\) are plotted against \(q^2\) (the cross-sectional plot) in Fig. S2. They have a positive slope and are well fitted by the straight line calculated by the following approximate equation \(^2\)

\[
P(q) = \left\{ \frac{\text{Si}(qL)}{qL/2} - \left[ \frac{\text{Sin}(qL/2)}{qL/2} \right]^2 \right\} \exp \left( -\frac{q^2 d^2}{16} \right)
\]

(S3)

when we choose with \(L = 40\) nm and \(d^2 = -0.5\) nm\(^2\). This indicates that a core-shell model may explain the negative \(d^2\). It should be however noted that the obtained parameters might not be useful to know the detail electron density of ATBC since the scattering function at this \(q\) range is also affectable by the local helical structure and distribution of solvent molecules nearby the polymer chain.

**Fig. S2.** Cross sectional plots for a core-shell cylinder model (circles) calculated from eq S1 with \(L = 40\) nm, \(d_i = 0.8\) nm, \(d_o = 1.2\) nm, \(\Delta \rho_i = 1.1\), and \(\Delta \rho_o = 0.963\). Solid line, calculated from eq S3 with \(L = 40\) nm and \(d^2 = -0.5\) nm\(^2\).
Two-States Wormlike Chain (TSWC) Model. The TSWC model is defined as the continuous limit of a freely rotating chain of $N$ bonds in which each bond can take two states: the state 1 with the length $b_1$, bond angle $\theta_1$, and probability $f_1$, and the state 2 with the length $b_2$, bond angle $\theta_2$, and probability $f_2$. The continuous chain is obtained by taking the limit $N \to \infty$, $b_1 \to 0$, $b_2 \to 0$, $\theta_1 \to \pi$, and $\theta_2 \to \pi$ under the conditions that the following four parameters are constant:

$$Nb_1 = N_0 h_1, \quad Nb_2 = N_0 h_2, \quad \frac{1 - \cos \theta_1}{2b_1} = \lambda_1, \quad \frac{1 - \cos \theta_2}{2b_2} = \lambda_2$$

(S4)

where $N_0$ is the degree of polymerization, $h_1$ and $h_2$ are the contour lengths per monomer unit in the states 1 and 2, respectively [$N_0 h_1$ ($N_0 h_2$) is the contour length of the chain at $f_1 = 1$ ($f_2 = 1$)], and $\lambda_1^{-1}$ and $\lambda_2^{-1}$ are the Kuhn segment lengths in the states 1 and 2, respectively. If appearances of states 1 and 2 are completely independent along the chain, we can show that expressions for dimensional and hydrodynamic properties of the TSWC model are identical with those for the original wormlike chain model with the contour length per monomer unit $h$ and the Kuhn segment length $\lambda$ calculated by

$$h \equiv f_1 h_1 + f_2 h_2, \quad \lambda \equiv \frac{(f_1 h_1 \lambda_1 + f_2 h_2 \lambda_2)}{(f_1 h_1 + f_2 h_2)}$$

(S5)

Heat of Dilution and Polymer-Solvent Interaction Parameter. Let us consider the dilution process of a polymer solution with a diluent. The diluent, the solvent (in the polymer solution), and polymer are denoted as components 0, 1, and 2, respectively. Using the lattice model, we may write enthalpies of the pure systems of components 0, 1, and 2 by
\[
H_0 = \frac{1}{2} zn_0 \varepsilon_{00}, \quad H_1 = \frac{1}{2} zn_1 \varepsilon_{11}, \quad H_2 = \frac{1}{2} zn_2 \varepsilon_{22}
\]  

(S6)

where \(n_0\) and \(n_1\) are the numbers of diluent and solvent molecules, \(n_2\) is the number of structural units of the polymer with the same volume as that of the diluent and solvent molecules, \(z\) is the coordination number, and \(\varepsilon_{ii}\) \((i = 0, 1, \text{and} 2)\) are the intermolecular (or inter-segmental) attractive potential energies. It is noted that \(\varepsilon_{ii}\)'s are negative and their absolute values are larger for stronger interaction. According to van Laar and Scachard,\(^3\) the heat of dilution of the polymer solution with the diluent is written as

\[
\Delta H_{0+12} = \frac{zn_0 \left\{ n_1^2 \left( \varepsilon_{01} - \frac{1}{2} (\varepsilon_{00} + \varepsilon_{11}) \right) + n_1n_2 \left( \varepsilon_{01} + \varepsilon_{02} - \varepsilon_{00} - \varepsilon_{12} \right) + n_2^2 \left[ \varepsilon_{02} - \frac{1}{2} (\varepsilon_{00} + \varepsilon_{22}) \right] \right\}}{(n_0 + n_1 + n_2)(n_1 + n_2)}
\]  

(S7)

When the diluent and solvent are \(L\)-EL and \(D\)-EL, respectively, \(\varepsilon_{00} = \varepsilon_{LL} = \varepsilon_{DD} = \varepsilon_{11}, \varepsilon_{01} = \varepsilon_{LD}, \varepsilon_{12} = \varepsilon_{DP}, \varepsilon_{02} = \varepsilon_{LP}, \varepsilon_{22} = \varepsilon_{PP}\). On the other hand, in the opposite case, \(\varepsilon_{00} = \varepsilon_{DD} = \varepsilon_{LL} = \varepsilon_{11}, \varepsilon_{01} = \varepsilon_{DL} ( = \varepsilon_{LD}), \varepsilon_{12} = \varepsilon_{LP}, \varepsilon_{02} = \varepsilon_{DP}, \varepsilon_{22} = \varepsilon_{PP}\). Inserting these relations into eq (S7), we obtain expressions for the heat of dilution \(q_{D,\text{soln} \rightarrow L,\text{dil}}\) in the former case, and that \(q_{L,\text{soln} \rightarrow D,\text{dil}}\) in the latter case as

\[
q_{D,\text{soln} \rightarrow L,\text{dil}} = \frac{zn_0 \left\{ n_1^2 \left( \varepsilon_{LD} - \varepsilon_{DD} \right) + n_1n_2 \left( \varepsilon_{LD} + \varepsilon_{LP} - \varepsilon_{DD} - \varepsilon_{DP} \right) + n_2^2 \left[ \varepsilon_{LP} - \frac{1}{2} (\varepsilon_{DD} + \varepsilon_{PP}) \right] \right\}}{(n_0 + n_1 + n_2)(n_1 + n_2)}
\]  

(S8)

and
Likewise, heats at diluted by the solvents, $q_{D, \text{soln} \rightarrow D, \text{dil}}$ and $q_{L, \text{soln} \rightarrow L, \text{dil}}$, are expressed by

$$q_{D, \text{soln} \rightarrow D, \text{dil}} = \frac{zn_0 n_2^2 \left[ \varepsilon_{DP} - \frac{1}{2} (\varepsilon_{DD} + \varepsilon_{PP}) \right]}{(n_0 + n_1 + n_2)(n_1 + n_2)} \quad \text{(S10)}$$

and

$$q_{L, \text{soln} \rightarrow L, \text{dil}} = \frac{zn_0 n_2^2 \left[ \varepsilon_{LP} - \frac{1}{2} (\varepsilon_{DD} + \varepsilon_{PP}) \right]}{(n_0 + n_1 + n_2)(n_1 + n_2)} \quad \text{(S11)}$$

Using eqs (S8) – (S11), the difference among the above four heats of dilution is given by

$$\left( q_{D, \text{soln} \rightarrow L, \text{dil}} - q_{D, \text{soln} \rightarrow D, \text{dil}} \right) - \left( q_{L, \text{soln} \rightarrow D, \text{dil}} - q_{L, \text{soln} \rightarrow L, \text{dil}} \right) = \frac{2n_0 n_2 z \left( \varepsilon_{LP} - \varepsilon_{DP} \right)}{n_0 + n_1 + n_2}$$

$$\approx 2n_2 z \left( \varepsilon_{LP} - \varepsilon_{DP} \right) \quad \left( n_0 \gg n_1 + n_2 \right) \quad \text{(S12)}$$

When the structural unit of the polymer is changed from the segment (with same volume as the solvent) to the repeating unit, we should replace $n_2(\varepsilon_{LP} - \varepsilon_{DP})$ by the $n_P(\varepsilon'_{LP} - \varepsilon'_{DP})$ where $n_P$ is the number of the repeating units in the diluted solution, and $\varepsilon'_{LP}$ and $\varepsilon'_{DP}$ are the attractive potential energies per repeating unit. Finally, we obtain the following equation

$$\left( q_{D, \text{soln} \rightarrow L, \text{dil}} - q_{D, \text{soln} \rightarrow D, \text{dil}} \right) - \left( q_{L, \text{soln} \rightarrow D, \text{dil}} - q_{L, \text{soln} \rightarrow L, \text{dil}} \right) = 2n_P z \left( \varepsilon'_{LP} - \varepsilon'_{DP} \right) \quad \text{(S13)}$$
In the text, we discuss the relation between the heat of dilution and the intramolecular hydrogen binding between the neighboring glucose residues connected by the glucosidic linkage, of which internal rotation determines the local conformation of ATBC. However, the choice of the normal glucose residue as the repeating unit is inconvenient to discuss the above relation, because the glucosidic linkage, we are interested in, is not included in the repeating unit. We can escape this inconvenience by choosing the structural unit enclosed by the dotted ellipsoid in the following scheme as the repeating unit.

Fig. S3. Schematic representation of the repeating units in the lattice model.

References and Notes


