In-situ formation of crosslinked core-corona polymeric nanoparticles from a novel hyperbranched core

Yu Zheng, Kristofer J. Thurecht, Xinyong Chen, Clive J. Roberts, Derek J. Irvine, Steven M. Howdle* and Wenxin Wang**

a School of Chemistry, University of Nottingham, Nottingham, UK, NG7 2RD

b Australian Institute for Bioengineering and Nanotechnology and Centre for Advanced Imaging, University of Queensland, St Lucia, Qld, 4072, Australia

c Laboratory of Biophysics and Surface Analysis, School of Pharmacy, University of Nottingham, Nottingham, UK

d Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, Nottingham, UK, NG7 2RD

e Network of Excellence for Functional Biomaterials, IDA Park, National University of Ireland, Galway, Ireland.

§ Present address: Network of Excellence for Functional Biomaterials, National University of Ireland, Galway, Ireland.

*Corresponding author: steve.howdle@nottingham.ac.uk, wenxin.wang@nuigalway.ie
SUPPORTING INFORMATION

1H NMR spectrum for hyperbranched polyDVB core (Fig. S1) and calculation of branching ratio (Eq. S1). The kinetic study and initiation efficiency of homopolymerization of styrene and methyl methacrylate with DE-ATRP approach (Table S1). Composition data of CCC nanogel by 1H NMR spectroscopy (Table S2). AFM topology image for CCC nanogel deposited on silica substrate (Fig. S2).

![PolyDVB core](image)

Figure S1. The 1H NMR spectrum for a hyperbranched polyDVB core (Entry 1, Table 1). The calculation of branching ratio was given in Eq.S1.

\[
Branching \ ratio = \frac{\text{Branched DVB units}}{\text{Linear DVB units}} = \frac{\left[\text{integral of (d + e)} - 3\times\text{integral of b}\right]}{\text{integral of b}} \quad (\text{Eq. S1})
\]
Table S1. Homopolymerisation of styrene and methyl methacrylate with DE-ATRP approach. The initiation efficiency was calculated from the kinetic study.

<table>
<thead>
<tr>
<th>Reaction Time (hrs)</th>
<th>Conv(^{c})</th>
<th>(M_\text{n}) (g.mol(^{-1}))(^{d})</th>
<th>PDI (^{d})</th>
<th>(M_\text{theo}) (g.mol(^{-1}))(^{e})</th>
<th>Initiation Efficient(^{f})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Styrene(^{a})</td>
<td>9</td>
<td>21%</td>
<td>4630</td>
<td>1.12</td>
<td>4541</td>
</tr>
<tr>
<td>2. MMA(^{b})</td>
<td>6</td>
<td>24.2%</td>
<td>5210</td>
<td>1.1</td>
<td>5011</td>
</tr>
</tbody>
</table>

[a]. Polymerisation condition: [Styrene]/[EBriB]/CuBr/CuBr\(_2\)/bpy =200:1:0.4:0.133:1.06 [Sty]=3M in toluene, T=90 °C
[b]. Polymerisation condition: [MMA]/[EBriB]/CuBr/CuBr\(_2\)/bpy =200:1:0.4:0.133:1.06 [MMA]=3M in butanone, T=60 °C
[c]. Monomer conversion is determined by \(^1\)H NMR
[d]. \(M_\text{n}\) and PDI is determined by GPC-RI detector with linear PMMA standard
[e]. Theoretical molecular weight= 200 x FW\(_\text{monomer}\) x Conv+FW\(_\text{initiator}\)
[f]. Initiation Efficiency=\(M_\text{theo}\)/\(M_\text{n}\)

Table S2. Characterization composition of DVB and MMA units for hyperbranched core (entry 1) and crosslinked core-corona nanogel (entry 2-4) formed using DE-ATRP. The compositions were calculated by comparing the integrals of different resonance of protons from DVB and MMA in the \(^1\)H NMR spectra (see Eq. 2 and Fig.5 in main text). It worth noting that the ratio of MMA to DVB could be an underestimate due to the presence of solvent (CDCl\(_3\)) peak at 7.26 ppm.

<table>
<thead>
<tr>
<th>Reaction time</th>
<th>DVB: MMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core</td>
<td>-</td>
</tr>
<tr>
<td>Core-Crosslinked Corona (CCC)</td>
<td>0.5:2.3</td>
</tr>
<tr>
<td></td>
<td>2:4.1</td>
</tr>
<tr>
<td></td>
<td>10:5.2</td>
</tr>
</tbody>
</table>
Figure S2 AFM topology image for CCC microgel deposited on silica substrate. The samples are prepared in a dilute solution (10 μg/L) in THF and dropped on silica substrate by spin coating (1000 rpm). The enlarged image (right) clearly shows the core-shell like molecule was formed during the reaction. The core-shell polymer is displayed as a ‘fried egg’ shape on the dry silica substrate.