Electronic Supplementary Information for

Dynamic-Covalent Nanostructures Prepared by Diels-Alder Reactions of Styrene-Maleic Anhydride-Derived Copolymers Obtained by Cascade Block Copolymerization

Abhijeet P. Bapat, a Jacob G. Ray, b Daniel A. Savin, b Emily A. Hoff, b Derek L. Patton, b Brent S. Sumerlin* a, c

a Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, TX 75275-0314 USA. Fax: (214) 768-4089; Tel: (214) 768-8802; E-mail:bsumerlin@mail.smu.edu

b School of Polymers and High Performance Materials, The University of Southern Mississippi, Hattiesburg, Mississippi 39406, USA.

c Center for Drug Discovery, Design, & Delivery, Southern Methodist University, Dallas, TX, 75275, USA
Fig. S1 (A) 1H and (B) 13C NMR spectra of P1 (red) after functionalization with furfurylamine to give P1f (yellow)
Fig. S2 (A) SEC refractive index traces of P(S-alt-MAn)$_{20}$-b-PS$_{47}$ before (P2) (red line) and after (P2f) (yellow line) functionalization with furfurylamine (B) SEC refractive index traces of P(S-alt-MAn)$_{20}$-b-PS$_{81}$ before (P3) (red line) and after (P3f) (yellow line) functionalization with furfurylamine.
Fig. S3 (a) Photographs of the solutions of P1 in THF with different amounts of furfurylamine after 22 h at 50 °C (The physically crosslinked gel obtained in the presence of 2 equiv. of furfurylamine is possibly a result of complexation between the pendant acid groups on the polymer backbone and the excess furfurylamine, leading to reduced solubility in 1,4-dioxane. Addition of dimethyl acetamide to the gel resulted in a clear solution), (d) SEC refractive index traces of P1 before (grey line), and after functionalization with furfurylamine [(1 equiv., red line) and (2 equiv., blue line)].
Fig. S4 a) Example of Gaussian multi-peak fitting analysis of the SEC trace of stars containing residual arms. b) Equation for calculation of % Arms based on the Gaussian multi-peak fitting analysis of the SEC traces.
Table S1 Typical results for synthesis of core-crosslinked stars and micelles by Diels-Alder reaction between 4,4’-bismaleimido diphenylmethane and the furan functional block copolymers P1f, P2f and P3f

| Polymer | $M_{n, arm}$^a (g/mol) | $M_{w, star}$^b (kg/mole) | Aggregation number (N_{agg})^c (arms/star) | D_h
^d (nm) |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P1f<sup>e</sup></td>
<td>7100</td>
<td>40300</td>
<td>5676</td>
<td>138</td>
</tr>
<tr>
<td>P2f<sup>f</sup></td>
<td>10,800</td>
<td>1500</td>
<td>139</td>
<td>29</td>
</tr>
<tr>
<td>P3f<sup>f</sup></td>
<td>14300</td>
<td>460</td>
<td>32</td>
<td>21</td>
</tr>
<tr>
<td>P3f<sup>g</sup></td>
<td>14300</td>
<td>2120</td>
<td>148</td>
<td>38</td>
</tr>
</tbody>
</table>

^a Calculated by 1H NMR,
^b Determined by static light scattering,
^c Approximate aggregation number calculated by dividing $M_{w,star}$ by $M_{n,arm}$ (it should be noted that these values are approximate because the molecular weight of the arms were M_n values determined by NMR and the molecular weight of the stars are M_w values determined by light scattering).
^d Determined by dynamic light scattering,
^e [polymer] = 30 mg/mL and furan: maleimide = 1:2.6,
^f [polymer] = 50 mg/mL and furan: maleimide ≈ 1:2,
^g Core-crosslinked micelles in toluene at [polymer] = 30 mg/mL and furan: maleimide ≈ 1:2
Fig. S5 Results for core-crosslinked star formation via Diels-Alder reactions between \(\text{P1f} \) and 4,4’-bismaleimido diphenylmethane \{[\text{P1f}] = 30, 50, and 100 mg/mL in 1,4-dioxane (furan:maleimide= 1:2.6 equiv., temperature = 50°C)\} (a) kinetics of the star formation reaction at [\text{P1f}] = 30 mg/mL and 50 mg/mL (b) SEC refractive index traces showing the progress of star formation at \([\text{P1f}] = 30\) mg/mL (c) SEC refractive index traces showing the progress of star formation at \([\text{P1f}] = 50\) mg/mL (d) crosslinked gel obtained at \([\text{P1f}] = 100\) mg/mL (i), unchanged gel after addition of solvent and mixing for 15 days at room temperature (ii), and clear solution obtained after decrosslinking of the gel via the retro Diels-Alder reaction (iii)
Fig. S6 Results for core-crosslinked star formation via Diels-Alder reaction between P2f and 4,4'-bismaleimido diphenylmethane ([P2f] = 30, 50, and 100 mg/mL in 1,4-dioxane (furan:maleimide = 1:2 equiv., temperature = 50°C)) (a) kinetics of the star formation reaction at [P2f] = 30 mg/mL and 50 mg/mL (b) SEC refractive index traces showing the progress of star formation at [P2f] = 30 mg/mL (c) SEC refractive index traces showing the progress of star formation at [P2f] = 50 mg/mL (d) crosslinked gel obtained at [P2f] = 100 mg/mL (i), unchanged gel after addition of solvent and mixing for 15 days at room temperature (ii), and clear solution obtained after decrosslinking of the gel via the retro Diels-Alder reaction (iii)
Fig. S7 AFM height and phase images of the stars obtained via the Diels-Alder reaction of 4,4′-bismaleimido diphenylmethane and (a) P2f and (b) P1f (stars were formed at [P2f] = 50 mg/mL and [P1f] = 30 mg/mL in 1,4-dioxane).
Fig. S8 Solution size distributions of stars obtained at $[\text{P3f}]=30$ (green), 50 (red), and 100 mg/mL (blue) compared to the unimers (grey) after ~195 h of Diels-Alder reaction in presence of 4,4’-bismaleimido diphenylmethane crosslinker (furan:maleimide = 1:2.1 equiv.)