Supporting Information

Chiral polymeric microspheres grafted with optically active helical polymer: A new class of materials for chiral recognition and chirally-controlled release

Ci Song, Chaohong Zhang, Fangjie Wang, Wantai Yang and Jianping Deng*

State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China

Tel: +86-10-6443-5128; Fax: +86-10-6443-5128

E-mail: dengjp@mail.buct.edu.cn
Figure S1. Time-adsorption profiles of \(D\) - and \(L\)-menthol on microspheres in chloroform. A, 2/1, B, 4/1, C, 6/1, D, 8/1, \(M_1/M_2\), mol/mol. Parameters for preparing microspheres, refer to Figure 4.

Figure S2. The (A) CD and (B) UV-vis spectra of poly(1-co-2)s measured in CHCl₃.
Figure S3. Time-adsorption profiles of D- and L-menthol on microspheres in chloroform. A, 5%, B, 7%, C, 9%, D, 11%, wt% β-CD-A. Parameters for preparing microspheres, refer to Figure 4.
Figure S4. Time-adsorption profiles of Boc-D- and Boc-L-proline on microspheres in chloroform. A, 5%, B, 7%, C, 9%, D, 11%, wt% β-CD-A. Parameters for preparing microspheres, refer to Figure 4.

Figure S5. Time-release profiles of D- and L-menthol on microspheres in ethanol. A, 2/1, B, 4/1, C, 6/1, D, 8/1, M1/M2, mol/mol. Parameters for preparing microspheres, refer to Figure 4.
Figure S6. Time-release profiles of Boc-D- and Boc-L-proline on microspheres in ethanol. A, 5%, B, 7%, C, 9%, D, 11%, wt% β-CD-A. Parameters for preparing microspheres, refer to Figure 4.