Glycolipids as a source of polyols for the design of original linear and cross-linked polyurethanes

Aurélie Boyer, 1,2 Cédric Epoune Lingome, 3,4 Olivia Condassamy, 1,2 Michèle Schappacher, 1,2 Sylvie Moëbs-Sanchez, *3,4 Yves Queneau, 3,4 Benoît Gadenne, 5 Carine Alfos, 5 Henri Cramail* 1,2

1 Univ. Bordeaux, LCPO, UMR 5629, F-33600 Pessac, France.
2 CNRS, LCPO, UMR 5629, F-33600 Pessac, France.
3 INSA-Lyon, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, ICBMS, Bât. J. Verne, 20 avenue A. Einstein, F-69621, Villeurbanne Cedex (France)
4 ICBMS, UMR 5246 ; CNRS ; Université de Lyon; Université Lyon 1; INSA-Lyon ; CPE-Lyon; F-69621, Villeurbanne Cedex (France)
5 ITERG, 11 rue Gaspard Monge, F-33600 Pessac, France

corresponding authors: cramail@ensebp.fr; sylvie.moebs@insa-lyon.fr; yves.queneau@insa-lyon.fr

Figure S1. 1H and COSY spectra (CDCl3) for 3
Figure S2. 1H, 13C, DEPT135 (CD3OD) for 5
Figure S3. COSY (CD3OD) for 5
Figure S4 HSQC (CD3OD) for 5
Figure S5 1H, COSY (DMSO-D6) for 5
Figure S6 13C, DEPT135 (DMSO-D6) for 5
Figure S7 HSQC, HMBC (DMSO-D6) for 5
Figure S8, DLS analysis of 5 and 7
Figure S9. 1H, 13C, DEPT135 (CDCl3) for 6
Figure S10 1H, 13C, DEPT135 (CD3OD) for 7
Figure S11 COSY (CD$_3$OD) for 7

Figure S12 HSQC (CD$_3$OD) for 7

Figure S13. 1H, 13C, DEPT135 (DMSO-D$_6$) for 7

Figure S14 COSY, HSQC (DMSO-D$_6$) for 7

Figure S15. HSQC experiment before and after polymerization of 5

Figure S16. SEC traces as a function of time for the synthesis of PU from polyol 5 and IPDI

Figure S17. 13C DEPT spectra in DMSO-d$_6$ of PUs obtained from 6, from 7 and from 6 and 7 as polyols and IPDI (CH_2>0 and CH_3, CH<0)

Figure S18. DSC traces of cross-linked PU from mixture of polyols 5 and 8 and IPDI

Figure S19. DSC traces of linear PU from mixture of polyols 5 and 8 and IPDI

Figure S20. DSC traces of linear PU from mixture of polyols 7 and 6 and IPDI

Figure S21: Weight loss traces and their corresponding derivatives curves for several polyurethanes (heating rate, 10°C/min).
Figure S1. 1H and COSY spectra (CDCl$_3$) for 3 (racemic mixture of two diastereomers)
Figure S2. 1H, 13C, DEPT135 (CD$_3$OD) for 5 (mixture of diastereomers)
Figure S3. COSY (CD$_3$OD) for 5 (mixture of diastereomers)
Figure S4 HSQC (CD$_3$OD) for 5 (mixture of diastereomers)
Figure S5 1H, COSY (DMSO-d$_6$) for 5 (mixture of diastereomers)
Figure S6 13C, DEPT135 (DMSO-d_6) for 5 (mixture of diastereomers)
Figure S7 HSQC, HMBC (DMSO-d6) for 5 (mixture of diastereomers)
Figure S8. Particle size distribution of 5 and 7 in THF at the concentration of 5 g.L\(^{-1}\) measured by DLS.
Figure S9. 1H, 13C, DEPT135 (CDCl₃) for 6 (racemic)
Figure S10 1H, 13C, DEPT135 (CD$_3$OD) for 7 (mixture of diastereomers and regioisomers)
Figure S11 COSY (CD$_3$OD) for 7
Figure S12 HSQC (CD$_3$OD) for 7
Figure S13. 1H, 13C, DEPT135 (DMSO-d$_6$) for 7

Water

Chemical Shift (ppm)
Figure S14 COSY, HSQC (DMSO-D$_6$) for 7

![NMR spectra of 7 with COSY and HSQC](image)

CH(OH)/CH$_3$

H/C (f)

Electronic Supplementary Material (ESI) for Polymer Chemistry
This journal is © The Royal Society of Chemistry 2012
Figure S15: HSQC experiments before and after polymerization of 5

Electronic Supplementary Material (ESI) for Polymer Chemistry
This journal is © The Royal Society of Chemistry 2012
Figure S16: SEC traces as a function of time of PUs from polyol 5 and IPDI
Figure S17. 13C DEPT spectra in DMSO-d$_6$ of PUs obtained from 6, from 7 and from a mixture of 6 and 7 as polyols and IPDI (CH_2>0 and CH_3, $CH<$0)
Figure S18: DSC traces of cross-linked PUs from mixture of polyols 5 and 8 and IPDI (Table 1 run 9 Table 2 runs 13-16)

Figure S19: DSC traces of linear PUs from different mixtures of polyols 5 and 8 and IPDI (increasing % of monomer 5) (Table 1 run 9 + Table 2 runs 10-12)
Figure S20: DSC traces of linear PUs from mixture of polyols 7 and 6 and IPDI

Figure S21: Weight loss traces and their corresponding derivatives curves for several glycopolyurethanes (heating rate, 10°C/min).