Electronic Supplementary Information

Metal-Free Click Polymerizations of Activated Azide and Alkynes

Qiang Wang, Hongkun Li, Qiang Wei, Jing Zhi Sun, Jian Wang, Xiao A. Zhang, Anjun Qin,* and Ben Zhong Tang**

a MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China

b Department of Chemistry, Institute for Advanced Study, Institute of Molecular Functional Materials, State Key Laboratory of Molecular Neuroscience, and Division of Biomedical Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China.

Content

Fig. S1 19F NMR spectra of chloroform-d solutions of perfluorobenzophenone 1 (A) and diazide monomer 2 (B).

Fig. S2 HRMS spectra of monomer 2 (calcd 408.0006).

Scheme S1 Synthetic routes to polytriazoles by metal-free click polymerization of ordinary alkynes and azide.

Table S1 Reaction of ordinary aliphatic and aromatic azides 4 and 5 with alkynes 3a and 3b.

Fig. S3 FT-IR spectra of monomers 2 (A), 3b (B) and polymer P1b (C).

Fig. S4 FT-IR spectra of monomers 2 (A), 3c (B), and polymer P1c (C).

Fig. S5 1H NMR spectra of DMF-d$_7$ solution of monomer 3b (A), polymer P1b (B). The solvent peaks are marked with asterisks.
Fig. S6 1H NMR spectra of DMF-d_7 solution of monomer 3c (A), polymer P1c (B). The solvent and water peaks are marked with asterisks. (5)

Fig. S7 13C NMR spectra of DMF-d_7 solution of monomer 3a (A), diazide 2 (B) and polymer P1a (C). The solvent and water peaks are marked with asterisks. (6)

Fig. S8 13C NMR spectra of DMF-d_7 solution of monomer 3b (A), diazide 2 (B) and polymer P1b (C). The solvent and water peaks are marked with asterisks. (6)

Fig. S9 13C NMR spectra of DMF-d_7 solution of monomer 3c (A), diazide 2 (B) and polymer P1c (C). The solvent and water peaks are marked with asterisks. (7)

Fig. S1 19F NMR spectra of chloroform-d solutions of perfluorobenzophenone 1 (A) and diazide monomer 2 (B).
Fig. S2 HRMS spectra of monomer 2 (calcd 408.0006).

Scheme S1 Synthetic routes to polytriazoles by metal-free click polymerization of ordinary alkynes and azide.

Table S1 Reaction of ordinary aliphatic and aromatic azides 4 and 5 with alkynes 3a and 3b.

<table>
<thead>
<tr>
<th>no.</th>
<th>monomer</th>
<th>polymer</th>
<th>M_w<sup>a</sup></th>
<th>PDI<sup>b</sup></th>
<th>yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3a + 4</td>
<td>PIIa</td>
<td>1800</td>
<td>1.00</td>
<td>trace</td>
</tr>
<tr>
<td>2</td>
<td>3b + 4</td>
<td>PIIb</td>
<td>1900</td>
<td>1.01</td>
<td>trace</td>
</tr>
<tr>
<td>3</td>
<td>3a + 5</td>
<td>PIIc</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^a Reactions were carried out in DMF at 100 °C under nitrogen for 12 h at a monomer concentration of 0.4 M. ^b Weight-average molecular weight (M_w) and polydispersity index (PDI = M_w/M_n) were estimated by gel permeation chromatography (GPC) in DMF/0.05 M LiBr solution on the basis of a PMMA calibration.
Fig. S3 FT-IR spectra of monomers 2 (A), 3b (B) and polymer P1b (C).

Fig. S4 FT-IR spectra of monomers 2 (A), 3c (B), and polymer P1c (C).
Fig. S5 1N NMR spectra of DMF-d_7 solution of monomer 3b (A), polymer P1b (B). The solvent peaks are marked with asterisks.

Fig. S6 1N NMR spectra of DMF-d_7 solution of monomer 3c (A), polymer P1c (B). The solvent and water peaks are marked with asterisks.
Fig. S7 13C NMR spectra of DMF-d_7 solution of monomer 3a (A), diazide 2 (B) and polymer PIa (C). The solvent and water peaks are marked with asterisks.

Fig. S8 13C NMR spectra of DMF-d_7 solution of monomer 3b (A), diazide 2 (B) and polymer PIb (C). The solvent and water peaks are marked with asterisks.
Fig. S9 13C NMR spectra of DMF-d_7 solution of monomer 3c (A), diazide 2 (B) and polymer PIc (C).

The solvent and water peaks are marked with asterisks.