SUPPORTING INFORMATION

Microgels or Microcapsules? Role of Morphology on the
Release Kinetics of Thermoresponsive PNIPAm-co-PEGMa
Hydrogels

Tatiya Trongsatitkul and Bridgette M. Budhlall*

*Department of Plastics Engineering and NSF Center for High-Rate Nanomanufacturing,
University of Massachusetts Lowell, MA, 01854, USA.

Contents:

Calibration curve for FITC-dextran’s fluorescence intensity (Figure S1)…………………………S2

Natural log of cumulative release % (Figure S2)…………………………………………………………S3
Figure S1. A calibration curve for FITC-dextran’s fluorescence intensity as a function of its concentration shows a linear relation and is used for determining a concentration of an unknown solution.

Non-First Order Release Kinetics in Microgels

In order to determine whether the % cumulative release follows first order kinetics, log % cumulative release is plotted as a function of log time and shown in Figure S2. For first release kinetics, the rate of the process depends only on concentration of a reactant (or drug in this case). As can be seen the relationship is not linear and therefore does not follow first order kinetics for PNIPAm, PEG, and PNIPAm-co-PEGMa microgels at 25, 37, and 45 °C.
Figure S2. Log % cumulative release plotted as a function of log time. As can be seen, the relationship is not linear and therefore does not follow first order kinetics for PNIPAm, PEG, and PNIPAm-co-PEGMa microgels at 25, 37, and 45 °C.