SUPPORTING INFORMATION

Hydrosoluble Dendritic Poly(ethylene oxide)s with Zinc Tetraphenylporphyrin Branching Points as Photosensitizers.

Anne-Laure Wirotius1,2, Emmanuel Ibarboure1,2, Luca Scarpantonio3, Michel Schappacher1,2, Nathan D. McClenaghan3 and Alain Deffieux1,2*

1 Univ. Bordeaux, LCPO, CNRS UMR 5629, F-33600 Pessac, France.

2 CNRS, LCPO, UMR 5629, F-33600, Pessac, France.

3 Univ. Bordeaux, ISM, CNRS UMR 5255, 351 cours de la libération, F-33400 Talence, France.

\textbf{Table of figures}

1H NMR \textbf{2a} \hspace{2cm} \textbf{S1}

1H NMR \textbf{3a} \hspace{2cm} \textbf{S2}

1H NMR \textbf{2b} \hspace{2cm} \textbf{S3}

1H NMR \textbf{3b} \hspace{2cm} \textbf{S4}

Fluorescence emission spectra \hspace{2cm} \textbf{S5-S7}

Singlet oxygen phosphorescence and DABCO quenching \hspace{2cm} \textbf{S8-S10}

Photodegradation tests of \textbf{4}, \textbf{7} and \textbf{10} \hspace{2cm} \textbf{S11}
Figure S1. 1H NMR spectrum of tetraphenylporphyrin 2a in CDCl$_3$.
Figure S2. 1H NMR spectrum of tetraphenylporphyrin 3a in CDCl$_3$.
Figure S3. 1H NMR spectrum of tetraphenylporphyrin 2b in CDCl$_3$.
Figure S4. 1H NMR spectrum of tetraphenylporphyrin 3b in CDCl$_3$.
Figure S5. Fluorescence emission spectra of dendritic porphyrin 4 in CH$_2$Cl$_2$ (red) and water (blue), λ_{ex} = 560 nm.
Figure S6. Fluorescence emission spectra of dendritic porphyrin 7 in CH$_2$Cl$_2$ (red) and water (blue), λ_{ex} = 560 nm.
Figure S7. Fluorescence emission spectra of dendritic porphyrin 10 in CH$_2$Cl$_2$ (red) and water (blue), $\lambda_{ex}=560$ nm.
Figure S8. Emission spectra of singlet oxygen generated by dendritic porphyrin photosensitizer 4 (3.7×10⁻⁵ M) in D₂O (black), in presence of \(^1\)O₂ quencher DABCO: 1eq (red) and 0.1 M (blue). Excitation at 560 nm.
Figure S9. Emission spectra of singlet oxygen generated by dendritic porphyrin photosensitizer (7) (8.7×10⁻⁶ M) in D₂O (black), in presence of ¹O₂ quencher DABCO: 1eq (red) and 0.1M (blue). Excitation at 560 nm.
Figure S10. Emission spectra of singlet oxygen generated by dendritic porphyrin photosensitizer (10) (2.7×10⁻⁶ M) in D₂O (black), in presence of ¹⁰₂ quencher DABCO: 1eq (red) and 0.1M (blue). Excitation at 560 nm.
Figure S11. Advancement of photodegradation of (4 ■), (7 ●) and (10 ▲) in air-equilibrated D₂O on a long timescale (in seconds) upon irradiation at 532 nm. (Laser power = 3.7 mW)
Table of photodegradation data corresponding to the average degradation of individual chromophores within the dendrimers based on initial mean absorptivity.

<table>
<thead>
<tr>
<th>ref</th>
<th>(\Phi)</th>
<th>half life s</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2.8E-07</td>
<td>9.4E+04</td>
</tr>
<tr>
<td>7</td>
<td>3.3E-07</td>
<td>9.3E+04</td>
</tr>
<tr>
<td>10</td>
<td>4.1E-07</td>
<td>9.6E+05</td>
</tr>
<tr>
<td>Iodo-BODIPY</td>
<td>1.83E-05</td>
<td>1.82E+03</td>
</tr>
</tbody>
</table>