A supramolecular polymer formed by the combination of crown ether-based and charge-transfer molecular recognitions

Shengyi Dong, Lingyan Gao, Jianzhuang Chen, Guocan Yu, Bo Zheng and Feihe Huang*

MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China,
Fax and Tel: +86-571-8795-3189; Email address: fhuang@zju.edu.cn.

Electronic Supplementary Material (ESI) for Polymer Chemistry
This journal is © The Royal Society of Chemistry 2012

Electronic Supplementary Information (11 Pages)

1. Materials and methods S2
2. Syntheses of monomers 1 and 2 S3
3. ^1H NMR spectra and UV/vis spectra of model compounds S10
1. Materials and methods

All reagents were commercially available and used as supplied without further purification. Compounds 32a,31, 432 and 533 were prepared according to the published procedures. NMR spectra were recorded with a Bruker Avance DMX 500 spectrophotometer or a Bruker Avance DMX 400 spectrophotometer using the deuterated solvent as the lock and the residual solvent or TMS as the internal reference. Low-resolution electrospray ionization mass spectra were recorded with a Bruker Esquire 3000 Plus spectrometer. High-resolution mass spectrometry experiments were performed with a Bruker Daltonics Apex III spectrometer. Viscosity measurements were carried out with a Cannon-Ubbelohde semi-micro dilution viscometer at 298 K in CH\textsubscript{3}CN. Scanning electron microscopy investigations were carried out on a JEOL 6390LV instrument. The melting points were collected on a SHPSIC WRS-2 automatic melting point apparatus. Electrospun supramolecular polymer nanofibers were obtained under the following conditions: 15 KV, 2.0 mL/h syringe flow rate, and 20 cm working distance, from a concentrated equimolar solution of 200 mM monomers 1 and 2.
2. Syntheses of monomers 1 and 2

2.1. Synthesis of monomer 1

A mixture of 3 (4.78 g, 10 mmol), 4-(pyren-1-yl)butanoic acid (2.88 g, 10 mmol), 1-(3’-dimethylaminopropyl)-3-ethylicarbodiimide hydrochloride (EDC, 3.85 g, 20 mmol) and 4-dimethylaminopyridine (DMAP, catalytic amount) in CH₂Cl₂ (50 mL) was stirred overnight at room temperature. After filtration, the solution was washed with water and brine. Then the organic layer was dried by MgSO₄ overnight. Dichloromethane was removed and the residue was purified by column chromatography (CH₂Cl₂/petroleum ether, 1:1, v/v) to afford 1 as a yellow solid (3.63 g, 48%). Mp: 144.2–146.5 ºC. The ¹H NMR spectrum of compound 1 is shown in Figure S1. ¹H NMR (400 MHz, CDCl₃, 298 K) δ (ppm): 8.15 (d, J = 8.0 Hz, 1H), 8.05 (dd, J₁ = 8.0 Hz, J₂ = 4.0 Hz, 2H), 7.98 (t, J = 8.0 Hz, 2H), 7.91 (s, 2H), 7.88 (d, J = 4.0 Hz, 1H), 7.73 (d, J = 8.0 Hz, 1H), 6.80–6.70 (m, 7H), 4.94 (s, 2H), 4.04–4.01 (m, 8H), 3.77–3.75 (m, 8H), 3.72 (s, 4H), 3.69 (s, 4H), 3.27 (d, J = 8.0 Hz, 2H), 2.39 (d, J = 8.0 Hz, 2H), 2.10 (d, J = 8.0 Hz, 2H). The ¹³C NMR spectrum of 1 is shown in Figure S2. ¹³C NMR (125 MHz, CDCl₃, 298 K) δ (ppm): 25.74, 31.64, 32.87, 65.18, 68.27, 68.29, 68.36, 68.73, 70.16, 75.80, 76.05, 76.31, 112.54, 112.98, 113.34, 120.36, 123.89, 126.42, 134.60, 147.78, 147.84, 147.91, 172.25. LRESIMS is shown in Figure S3: m/z 771.5 [M + Na]⁺ (100%). HRESIMS: m/z calcd for [M+ H]⁺ C₄₅H₄₉O₁₀, 748.3247; found 748.3242; error −0.7 ppm.
Figure S1. 1H NMR spectrum (400 MHz, CDCl$_3$, 298 K) of 1.
Figure S2. 13C NMR spectrum (125 MHz, CDCl$_3$, 298 K) of 1.
Figure S3. Electrospray ionization mass spectrum of 1.
2.2. Synthesis of monomer 2

A mixture of 4 (3.13 g, 10 mmol), K$_2$CO$_3$ (2.76 g, 20 mmol) and 1,10-dibromodecane (6.00 g, 20 mmol) in CH$_3$CN (100 mL) was stirred under reflux overnight. Then the solvent was removed and the residue was dissolved in 10% HCl/ethyl acetate (50 mL) and the mixture was stirred overnight at room temperature. The white solid was filtered, washed with ethyl acetate thoroughly, and dissolved in warm deionized water/acetonitrile (250 mL, 5:1, v:v). A saturated aqueous solution of NH$_4$PF$_6$ was added to afford a white precipitate, which was filtered and washed with deionized water. This white precipitate was added to a mixture of 5 (6.5 g, 9.1 mmol), CuSO$_4$•5H$_2$O (0.25 g, 1.0 mmol), Sodium L-ascorbate (VcNa, 0.40 g, 2.0 mmol) and DMF (25 mL). The mixture was stirred at 50 ºC overnight. Then the mixture was dropped to cold water to yield a light yellow solid. The solid was filtered and recrystallized from CH$_3$CN/MeOH/water to afford 2 as a gray solid (4.1 g, 37%). Mp: 189.8–192.3 ºC. The 1H NMR spectrum of compound 2 is shown in Figure S4. 1H NMR (400 MHz, CD$_3$SOCD$_3$, 298 K) δ (ppm): 9.45 (d, J = 8.0 Hz, 4H), 8.69 (d, J = 8.0 Hz, 4H), 7.59 (d, J = 8.0 Hz, 2H), 7.45–7.36 (m, 8H), 7.21 (s, 2H), 7.13 (d, J = 8.0 Hz, 2H), 7.08 (s, 1H), 6.96 (d, J = 8.0 Hz, 2H), 5.83 (d, J = 8.0 Hz, 2H), 5.14 (s, 2H), 4.34 (t, J = 8.0 Hz, 2H), 3.95 (t, J = 8.0 Hz, 2H), 2.27 (s, 6H), 1.79–1.69 (m, 4H), 1.39–1.25 (m, 12H). The 13C NMR spectrum of 2 is shown in Figure S5. 13C NMR (125 MHz, CD$_3$CN, 298 K) δ (ppm): 21.37, 26.85, 27.25, 29.79, 30.06, 30.16, 30.22, 30.31, 31.06, 51.27, 51.87, 52.00, 62.68, 65.54, 66.03, 69.21, 116.09, 116.92, 118.62, 123.67, 125.25, 126.07, 128.12, 128.53, 130.20, 130.60, 131.13, 132.13, 132.46, 132.64, 132.83, 133.68, 140.76, 144.13, 146.51, 146.69, 151.45, 151.50, 160.94, 161.36. LRESIMS is shown in Figure S6: m/z 270.2 [M – 3PF$_6$]$^{3+}$ (100%), 480.1 [M – 2PF$_6$]$^{3+}$ (100%). HRESIMS: m/z calcd for [M – PF$_6$]$^{3+}$ C$_{53}$H$_{63}$F$_{12}$N$_6$O$_2$P$_2$, 1105.4296; found 1105.4280; error –1.4 ppm.
Figure S4. 1H NMR spectrum (400 MHz, CD$_3$SOCD$_3$, 298 K) of 2.

Figure S5. 13C NMR spectrum (125 MHz, CD$_3$CN, 298 K) of 2.
Figure S6. Electrospray ionization mass spectrum of 2.
3. 1H NMR spectra and UV/vis spectra of model compounds

Figure S7. Partial 1H NMR spectra (400 MHz, CD$_3$CN, 298 K): a) paraquat (5.00 mM); b) paraquat and pyrene (both 5.00 mM); c) pyrene (5.00 mM).

Figure S8. UV/Vis spectroscopy of pyrene (red line) and pyrene-paraquat complexes (black line). The concentrations of pyrene and paraquat are 0.45×10^{-4} M.
Figure S9. Partial 1H NMR spectra (400 MHz, CD$_3$CN, 298 K): a) dibenzo-24-crown-8 and monomer 2 (1.00 mM for each); b) after adding pyrene (1.00 mM).

References:

