Amphiphilic chiral block-poly(thiophene)s: Tuning the blocks.

Michiel Verswyvel, Karel Goossens and Guy Koeckelberghs.

Table of contents:

A. ¹H and ¹³C NMR spectra

1. In solution

 a. Neutral media

 i. Figure S11: UV-vis, CD and gabs spectra for the solvatochroism experiments of P2 in a neutral THF/MeOH mixture.
 ii. Figure S12: UV-vis, CD and gabs spectra for the addition of acid to P2 in a neutral THF/MeOH mixture of THF/MeOH 40/60.
 iii. Figure S13: gabs spectra of P3 in a neutral THF/MeOH mixture.
 iv. Figure S14: UV-vis, CD and gabs spectra for the addition of acid to P4 in a neutral THF/MeOH mixture of THF/MeOH 40/60.
 v. Figure S15: UV-vis, CD and gabs spectra for the addition of acid to P4 in neutral THF/MeOH 40/60 mixture.
 vi. Figure S16: UV-vis, CD and gabs spectra for the solvatochroism experiments of P5 in a neutral THF/MeOH mixture.
 vii. Figure S17: UV-vis, CD and gabs spectra for the addition of acid to P5 in a neutral THF/MeOH 20/80 mixture.
 viii. Figure S18: UV-vis, CD and gabs spectra for the solvatochroism experiments of P6 in a neutral THF/MeOH mixture.
 ix. Figure S19: UV-vis, CD and gabs spectra for the addition of acid to P6 in a neutral THF/MeOH 20/80 mixture.

 b. Acidic media

 i. Figure S20: UV-vis, CD and gabs spectra for the solvatochroism experiments of P2 in an acidic THF/MeOH mixture.
 ii. Figure S21: UV-vis, CD and gabs spectra for the addition of base to P2 in an acidic THF/MeOH 60/40 mixture.
 iii. Figure S22: UV-vis, CD and gabs spectra for the solvatochroism experiments of P4 in an acidic THF/MeOH mixture.
 iv. Figure S23: UV-vis, CD and gabs spectra for the addition of base to P4 in an acidic THF/MeOH 40/60 mixture.
 v. Figure S24: UV-vis, CD and gabs spectra for the solvatochroism experiments of P5 in an acidic THF/MeOH mixture.
 vi. Figure S25: UV-vis, CD and gabs spectra for the addition of base to P5 in an acidic THF/MeOH 20/80 mixture.
 vii. Figure S26: UV-vis, CD and gabs spectra for the solvatochroism experiments of P6 in an acidic THF/MeOH mixture.
 viii. Figure S27: UV-vis, CD and gabs spectra for the addition of base to P6 in an acidic THF/MeOH 20/80 mixture.

2. In film

 a. Spincoated from neutral media

 i. Figure S28: UV-vis, CD and gabs spectra for the annealing experiments with P2 with fast cooling.
 ii. Figure S29: UV-vis, CD and gabs spectra for the annealing experiments with P2 with slow cooling.

B. UV-vis & CD spectroscopy

1. In solution
Figure S30: UV-vis, CD and g_{abs} spectra for the annealing experiments with P3 with fast cooling ... 32
Figure S31: UV-vis, CD and g_{abs} spectra for the annealing experiments with P4 with fast cooling ... 33
Figure S32: UV-vis, CD and g_{abs} spectra for the annealing experiments with P4 with slow cooling ... 34
Figure S33: UV-vis, CD and g_{abs} spectra for the annealing experiments with P5 with fast cooling ... 35
Figure S34: UV-vis, CD and g_{abs} spectra for the annealing experiments with P6 with fast cooling ... 36
Figure S35: UV-vis, CD and g_{abs} spectra for the annealing experiments with P6 with slow cooling ... 37

ii. Spincoated from acidic media .. 38

Figure S36: UV-vis, CD and g_{abs} spectra for the annealing experiments with P2 with fast cooling ... 38
Figure S37: UV-vis, CD and g_{abs} spectra for the annealing experiments with P3 with fast cooling ... 39
Figure S38: UV-vis, CD and g_{abs} spectra for the annealing experiments with P4 with fast cooling ... 40
Figure S39: UV-vis, CD and g_{abs} spectra for the annealing experiments with P6 with fast cooling ... 41
Figure S40: UV-vis, CD and g_{abs} spectra for the annealing experiments with P6 with slow cooling ... 42
Figure S41: UV-vis, CD and g_{abs} spectra for the spincoated films of P6 with different film thicknesses ... 43
Figure S42: UV-vis, CD and g_{abs} spectra for the annealing experiments with P6 with different film thicknesses and fast cooling ... 44
Figure S43: UV-vis, CD and g_{abs} spectra for the annealing experiments with P6 with different film thicknesses and slow cooling ... 45

C. Polarizing optical microscopy (POM) .. 46

Figure S44: POM picture of the P6 polymer sample during slow cooling from 90 °C ... 46

D. Differential scanning calorimetry (DSC) of polymers P1-P6 .. 47
A. 1H and 13C NMR spectra

Figure S1: 1H NMR spectrum of 2.

Electronic Supplementary Material (ESI) for Polymer Chemistry
This journal is © The Royal Society of Chemistry 2013
Figure S2: 13C NMR spectrum of 2.
Figure S3: \(^1\)H NMR spectrum of 3.
Figure S4: 13C NMR spectrum of 3.
Figure S5: 1H NMR spectrum of 4.
Figure S6: 13C NMR spectrum of 4.
Figure S7: 1H NMR spectrum of P2.
Figure S8: 1H NMR spectrum of P4.
Figure S9: 1H NMR spectrum of P5.
Figure S10: 1H NMR spectrum of P6.
B. UV-vis & CD spectroscopy

1. In solution

i. Neutral media

Figure S11: UV-vis, CD and gabs spectra for the solvatochroism experiments of P2 in a neutral THF/MeOH mixture. The ratio THF/MeOH is given in the legend.
Figure S12: UV-vis, CD and g_ab spectra for the addition of acid to P2 in a neutral THF/MeOH mixture of THF/MeOH 40/60.

The ratio THF/MeOH is given in the legend.
Figure S13: g_{abs} spectra of P3 in a neutral THF/MeOH mixture. The ratio THF/MeOH is 40/60.
Figure S14: UV-vis, CD and g_{abs} spectra for the addition of acid to P4 in a neutral THF/MeOH mixture of THF/MeOH 40/60. The ratio THF/MeOH is given in the legend.
Figure S15: UV-vis, CD and g_{abs} spectra for the addition of acid to P4 in neutral THF/MeOH 40/60 mixture. The ratio THF/MeOH is given in the legend.
Figure S16: UV-vis, CD and g_{abs} spectra for the solvatochroism experiments of P5 in a neutral THF/MeOH mixture. The ratio THF/MeOH is given in the legend.
Figure S17: UV-vis, CD and g_{abs} spectra for the addition of acid to P5 in a neutral THF/MeOH 20/80 mixture. The ratio THF/MeOH is given in the legend.
Figure S18: UV-vis, CD and g_{abs} spectra for the solvatochroism experiments of P6 in a neutral THF/MeOH mixture. The ratio THF/MeOH is given in the legend.
Figure S19: UV-vis, CD and g_{abs} spectra for the addition of acid to P6 in a neutral THF/MeOH 20/80 mixture. The ratio THF/MeOH is given in the legend.
ii. **Acidic media**

Figure S20: UV-vis, CD and \(g_{abs} \) spectra for the solvatochromism experiments of P2 in an acidic THF/MeOH mixture. The ratio THF/MeOH is given in the legend.
Figure S21: UV-vis, CD and g_{abs} spectra for the addition of base to P2 in an acidic THF/MeOH 40/60 mixture. The ratio THF/MeOH is given in the legend.
Figure S22: UV-vis, CD and g_{abs} spectra for the solvatochromism experiments of P4 in an acidic THF/MeOH mixture. The ratio THF/MeOH is given in the legend.
Figure S23: UV-vis, CD and g_{abs} spectra for the addition of base to P4 in an acidic THF/MeOH 40/60 mixture. The ratio THF/MeOH is given in the legend.
Figure S24: UV-vis, CD and g_{abs} spectra for the solvatochroism experiments of P5 in an acidic THF/MeOH mixture. The ratio THF/MeOH is given in the legend.
Figure S25: UV-vis, CD and g_{abs} spectra for the addition of base to P5 in an acidic THF/MeOH 20/80 mixture. The ratio THF/MeOH is given in the legend.
Figure S26: UV-vis, CD and g_{abs} spectra for the solvatochromism experiments of P6 in an acidic THF/MeOH mixture. The ratio THF/MeOH is given in the legend.
Figure S27: UV-vis, CD and g_{abs} spectra for the addition of base to P6 in an acidic THF/MeOH 20/80 mixture. The ratio THF/MeOH is given in the legend.
2. **In film**

Films were prepared by spin coating from neutral or acidified THF solutions (1200 rpm, 20 s) and the solutions were filtered with a 0.20 µm filter prior to spin coating.

i. **Spincoated from neutral media**

Figure S28: UV-vis, CD and g\textsubscript{abs} spectra for the annealing experiments with P2 with fast cooling.

Each run, the film is annealed for 1 min at the temperature given in the legend and cooled fast at room T.
Figure S29: UV-vis, CD and g\textsubscript{abs} spectra for the annealing experiments with P2 with slow cooling. Each run, the film is annealed for 1 min at the temperature given in the legend and cooled slow at 2 °C min-1.
Figure S30: UV-vis, CD and g_{ab} spectra for the annealing experiments with P3 with fast cooling. Each run, the film is annealed for 1 min at the temperature given in the legend and cooled fast at room T.
Figure S31: UV-vis, CD and g_{abs} spectra for the annealing experiments with P4 with fast cooling.

Each run, the film is annealed for 1 min at the temperature given in the legend and cooled fast at room T.
Figure S32: UV-vis, CD and g_{abs} spectra for the annealing experiments with P4 with slow cooling.

Each run, the film is annealed for 1 min at the temperature given in the legend and cooled slow at 2 °C min$^{-1}$.
Figure S33: UV-vis, CD and g_{abs} spectra for the annealing experiments with P5 with fast cooling.
Each run, the film is annealed for 1 min at the temperature given in the legend and cooled fast at room T.
Figure S34: UV-vis, CD and g_{abs} spectra for the annealing experiments with P6 with fast cooling.
Each run, the film is annealed for 1 min at the temperature given in the legend and cooled fast at room T.
Figure S35: UV-vis, CD and \(g_{ab} \) spectra for the annealing experiments with P6 with slow cooling.
Each run, the film is annealed for 1 min at the temperature given in the legend and cooled slow at 2 °C min\(^{-1}\).

1, II and III holds different measurements of the same film but under different angles.
ii. Spincoated from acidic media

Figure S36: UV-vis, CD and g_{abs} spectra for the annealing experiments with P2 with fast cooling.

Each run, the film is annealed for 1 min at the temperature given in the legend and cooled fast at room T.
Figure S37: UV-vis, CD and g_{ab} spectra for the annealing experiments with P3 with fast cooling.

Each run, the film is annealed for 1 min at the temperature given in the legend and cooled fast at room T.
Figure S38: UV-vis, CD and g_{obs} spectra for the annealing experiments with P4 with fast cooling.

Each run, the film is annealed for 1 min at the temperature given in the legend and cooled fast at room T.
Figure S39: UV-vis, CD and g_{abs} spectra for the annealing experiments with P6 with fast cooling.

Each run, the film is annealed for 1 min at the temperature given in the legend and cooled fast at room T.
Figure S40: UV-vis, CD and g_{abs} spectra for the annealing experiments with P6 with slow cooling. Each run, the film is annealed for 1 min at the temperature given in the legend and cooled slow at 2 °C min\(^{-1}\).
Figure S41: UV-vis, CD and g_{abs} spectra for the spincoated films of P6 with different film thicknesses. The concentration of the solution in mg/ml used for spincoating is given at the end of the label in the legend.
Figure S42: UV-vis, CD and g_{abs} spectra for the annealing experiments with P6 with different film thicknesses and fast cooling.

Each run, the film is annealed for 1 min at the temperature given in the legend and cooled fast at room T. The concentration of the solution in mg/ml used for spincoating is given at the end of the label in the legend.
Figure S43: UV-vis, CD and g_{abs} spectra for the annealing experiments with P6 with different film thicknesses and slow cooling.

Each run, the film is annealed for 1 min at the temperature given in the legend and cooled slow at 2 °C min⁻¹. The concentration of the solution in mg/ml used for spincoating is given at the end of the label in the legend.
C. Polarizing optical microscopy (POM)

Figure S44: POM picture of the P6 polymer sample during slow cooling from 90 °C. The picture of the defect texture was taken at 68 °C (100 × magnification).
D. Differential scanning calorimetry (DSC) of polymers P1-P6

The polymers were first heated well above their melting temperature, kept at this temperature for 15 minutes and then slowly cooled down at 2°C min⁻¹. Finally, the melting temperatures were also determined by reheating the samples at 10°C min⁻¹.

Sample: P3OT 29
Size: 1.1000 mg

Sample: I
Size: 3.4600 mg
Sample: C8N
Size: 2.4900 mg

DSC

File: C:\\metingen Michiel\\C8N tot 180.001
Operator: Tine
Run Date: 01-Oct-2012 18:38
Instrument: DSC Q2000 V24.9 Build 121

143°C
118°C
130.62°C
7.2J/g
-0.2
0.0
0.2
0.4
0.6
Heat Flow (W/g)
0 50 100 150 200 250
Temperature (°C)

Sample: C10N
Size: 3.2400 mg

DSC

File: C:\\metingen Michiel\\C20N tot 180.001
Operator: Tine
Run Date: 01-Oct-2012 15:36
Instrument: DSC Q2000 V24.9 Build 121

70°C
85°C
70.72°C
6.3J/g
-0.3
-0.1
0.1
0.3
0.5
0.7
Heat Flow (W/g)
0 50 100 150 200 250
Temperature (°C)