Pyrroloindacenodithiophene Polymers: The Effect of Molecular Structure on OFET Performance

Jenny E. Donaghey, a Eun-Ho Sohn, a, b Raja Shahid Ashraf, a Thomas D. Anthopoulos, c Scott E. Watkins, d Kigook Song, e Charlotte K. Williams, a Iain McCulloch a

a Department of Chemistry and Centre for Plastic Electronics, Imperial College London, London SW7 2AZ, UK. E-mail: jenny.donaghey@imperial.ac.uk.
b Interface Materials and Engineering Laboratory, Korea Research Institute of Chemical Technology, Daejon 305-343, Republic of Korea
c Department of Physics and Centre for Plastic Electronics, Imperial College London, London SW7 2AZ, UK
d CSIRO Materials Science and Engineering, VIC 3169, Victoria, Australia
e Materials Research Center for Information Display, Kyung Hee University, Yongin, Gyeonggi-do 446-701, Republic of Korea

Supporting Information

DSC data

Energy level DFT calculations

Transistor output curves
DSC Data

Figure S1 DSC of a) NIDT-T, b) NIDT-TT, c) NIDT-TPD and b) NIDT-DPP from 25-300 °C
Density Functional Theory Energy Level Calculations

a) NIDT-T

b) NIDT-TT
c) NIDT-TPD

![NIDT-TPD diagram]

LUMO

HOMO

d) NIDT-DPP

![NIDT-DPP diagram]

LUMO

HOMO
Transistor Output Curves

Figure S2 OFET output curves for a) NIDT-T, b) NIDT-TT, c) NIDT-TPD and d) NIDT-DPP