Supporting Information

Synthesis of high-molecular weight block copolymers of norbornene and propylene with methyl methacrylate initiated by fluorenylamido titanium complex

Ryo Tanaka, Yuushou Nakayama and Takeshi Shiono*

Table of Contents

 GPC traces of the obtained block copolymers 2
 1H NMR spectrum of the obtained block copolymers 3-4
 TG charts of the obtained block copolymers 5-6
 DSC chart of PP-PMMA block before annealing 7
Figure S1. GPC traces of propylene–MMA block copolymers (Table 1: red, run 1; blue, run 2; green, run 3).

Figure S2. GPC traces of propylene–MMA block copolymer and prepolymer (Table 2: blue, run 1; red, run 2).
Figure S3. 1H NMR spectrum of propylene–MMA block copolymer (Table 2, run 4). 25 mol% of MMA was introduced.

Figure S4. 1H NMR spectrum of propylene–MMA block copolymer (Table 2, run 2). 9 mol% of MMA was introduced.
Figure S5. 1H NMR spectrum of norbornene–propylene–MMA block copolymer (Table 4, run 2). 23 mol% of MMA was introduced.

Figure S6. 1H NMR spectrum of norbornene–propylene–MMA block copolymer (Table 4, run 3). 74 mol% of MMA was introduced.
Figure S7. TG data of propylene–MMA block copolymer (25 mol% PMMA, Table 2, run 4). 5% degradation temperature was 252 °C.

Figure S8. TG data of propylene–MMA block copolymer (9 mol% PMMA, Table 2, run 2). 5% degradation temperature was 280 °C.
Figure S9. TG data of norbornene–propylene–MMA block copolymer (23 mol% PMMA, Table 4, run 2). 5% degradation temperature was 262 °C.

Figure S10. TG data of norbornene–propylene–MMA block copolymer (74 mol% PMMA, Table 4, run 3). 5% degradation temperature was 255°C.
Figure S11. DSC chart of propylene–MMA block copolymer (25 mol% PMMA, Table 2, run 3) without annealing. T_m of the PP block (88°C), which was observed after annealing, was not observed. Lower T_g value (98°C) was observed after annealing, indicating that mixed phase of syn-PP and syn-PMMA was formed.