Supporting Information for
Microstructure Analysis of Biocompatible Phosphoester-co-polymers

Tobias Steinbach,a,b,c Romina Schröder,a Sandra Ritz,c Frederik R. Wurmc

aInstitute of Organic Chemistry, Johannes Gutenberg-University (JGU), Duesbergweg 10-14, 55099 Mainz, Germany

bGraduate School Material Science in Mainz, Staudinger Weg 9, D-55128 Mainz, Germany

cMax Planck Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, wurm@mpip-mainz.mpg.de

Contact address: wurm@mpip-mainz.mpg.de, phone: 0049 6131 379 723, fax: 0049 6131 370 330.

\textbf{Fig. S1.} Experimental setup for the oxidation of 2-chloro-1,3,2-dioxaphospholane.
Fig. S2. 31P NMR spectrum of a) EEP and b) EMEP in DMSO-d_6.
Fig. S3. 1H NMR spectrum of EMEP in CDCl$_3$.
Fig. S4. 1H NMR spectrum of P(EEP$_{17}$-co-EMEP$_{16}$) in DMSO-d_6.
Fig. S5. SEC chromatograms of a) P(EEP-co-EMEP) copolymers and b) PEMEP homopolymers (measured in DMF at 50 °C and a flow rate of 1.0 mL min⁻¹). Periodic artifacts are due to highly diluted samples (1.0 mg mL⁻¹, 100 µL injected) and the high measuring sensitivity of the employed RI detector.
Fig. S6. Graphical representation of the measured T_g of all copolymers.
Fig. S7. Dyad analysis with all possible head-to-head (above) and tail-to-tail (bottom) configurations of PEMEP.
Fig. S8. 31P NMR of all copolymers. a) Magnification of the tail-to-tail region. b) Zoom in the region assigned to the EMEP$_{a}$-EMEP$_{b}$ dyad.
Fig. S9. Tail-to-tail microstructures resulting in different chemical shifts in 31P NMR (compare to Fig. S8, ESI)
Fig. S10. 1H31P HMBC spectra of five representative examples in DMSO-d_6: a) PEEP$_{32}$, b) P(EEP$_{28}$-co-EMEP$_5$); c) P(EEP$_{17}$-co-EMEP$_{16}$); d) P(EEP$_{4}$-co-EMEP$_{29}$); e) PEMEP$_{38}$.

Electronic Supplementary Material (ESI) for Polymer Chemistry
This journal is © The Royal Society of Chemistry 2013
Fig. S11. 1H DOSY of five representative examples in DMSO-d_6: a) PEEP$_{32}$, b) P(EEP$_{28}$-co-EMEP$_{5}$); c) P(EEP$_{17}$-co-EMEP$_{16}$); d) P(EEP$_{4}$-co-EMEP$_{20}$); e) PEMEP$_{38}$. The diffusion coefficient calculated by Bayesian DOSY Transformation is for all copolymers in the same range.
Fig. S12. Change in transmittance of PEMEP solutions with different molecular weights. Cloud points were determined in PBS pH 7.4 (10 mM) prepared from MilliQ water (18.2 mΩ) at a concentration of 10.0 mg∙mL⁻¹. The heating/cooling rate was 1 °C·min⁻¹ and values were recorded every 0.1 °C.
Fig. S13. Change in transmittance of P(EEP-co-EMEP) copolymers at a concentration of 10 mg·mL⁻¹ in PBS pH 7.4 10 mM at 500 nm and a heating rate of 1°C·min⁻¹.