Supporting Information

Synthesis of Water-Soluble Polyisocyanate with Oligo(ethylene glycol) Side-Chain as a New Thermoresponsive Polymer

Naoya Sakai,a Mingoo Jin,b Shin-ichiro Sato,b Toshifumi Satoh,b and Toyoji Kakuchi*b

a Graduate School of Chemical Sciences and Engineering, Hokkaido University, N13W8, Kita-ku, Sapporo 060-8628, Japan.
b Faculty of Engineering, Hokkaido University, N13W8, Kita-ku, Sapporo 060-8628, Japan. E-mail: kakuchi@poly-bm.eng.hokudai.ac.jp
SCE, NMR, and Thermoresponsive Measurements

Figure S1. (a) SEC traces of obtained PMeEO₃ICs (runs 1 – 5, and 7) in THF.

Figure S2. ¹³C NMR spectra of MeEO₃IC (upper) and PMeEO₃IC (run 2, lower) in CDCl₃.
Figure S3. Transmittance versus temperature for the aqueous solutions of PMeEO$_3$Ic (run 3, $M_{n,NMR} = 5,560$) with polymer concentrations of 20, 30, and 40 g L$^{-1}$. The data were recorded at 400 nm at the heating rate of 1 °C/min.

Figure S4. (a) SEC trace of PMeEO$_2$Ic (run 6) in THF, (b) 1H NMR spectrum of PMeEO$_2$Ic (run 6) in CDCl$_3$, and (c) 13C NMR spectrum of PMeEO$_2$Ic (run 6) in CDCl$_3$.
Figure S5. (a) SEC trace of PEtEO3IC (run 8) in THF and (b) 1H NMR spectrum of PEtEO3IC (run 8) in CDCl$_3$, and (c) 13C NMR spectrum of PMeEO2IC (run 8) in CDCl$_3$.

Figure S6. (a) SEC trace of PMeEO4IC (run 9) in THF and (b) 1H NMR spectrum of PMeEO4IC (run 9) in CDCl$_3$, and (c) 13C NMR spectrum of PMeEO2IC (run 9) in CDCl$_3$.