Supporting information

Fabrication of Aggregation-induced Emission Dye Based Fluorescent Organic Nanoparticles via Emulsion Polymerization and Their Cell Imaging Applications

Xiaoyong Zhanga,b,\textdagger,*, Xiqi Zhangb,*, Bin Yangb, Meiying Liuc, Wanyun Liua, Yiwang Chena, Yen Weib,*

a Department of Chemistry/Institute of Polymers, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China. b Department of Chemistry and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, P. R. China. c Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Organic Solids, Laboratory of New Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

xiaoyongzhang1980@gmail.com; weiyen@tsinghua.edu.cn
Results and Discussion

Fig. S1 PL spectra of PhE in DMSO/water mixtures with different water fractions, concentration=10^{-5} M

Fig. S2 The PL spectra of PhE-Pst NPs with different feed ratio of PhE. These nanoparticles were synthesized according to the experiment section for preparation of PhE-Pst NPs. Among them, the weight of PhE is 5, 10, 50 mg for PhE-Pst-1, PhE-Pst-2, PhE-Pst-3; respectively.
Fig. S3 1HNMR spectra of PhE and PhE-Pst dispersed in CDCl$_3$.