Electronic Supporting Information to:

One-pot synthesis of poly(norbornene)-block-poly(lactic acid) copolymers using a bifunctional initiator

Hwayoon Jung, Niels ten Brummelhuis, Si Kyung Yang and Marcus Weck*

Molecular Design Institute, NYU Department of Chemistry, 29 Washington Place, New York, 10003 NY, USA.

*marcus.weck@nyu.edu

Materials

All chemicals were purchased either from Acros Organics, Alfa Aesar, Cambridge Isotope Labs, or Sigma-Aldrich and used without further purification unless otherwise noted. The dichloromethane used in polymerization was distilled twice from calcium hydride and degassed by the freeze-pump-thaw method. L-lactide was recrystallized three times from toluene. Compound 1 and exo-bicyclo[2.2.1]hept-5-ene-2-carboxylic acid 6 were synthesized according to literature reports.

Characterization methods

1H- and 13C-NMR spectroscopy measurements were performed on a Bruker Avance-600 (1H: 600 MHz; 13C: 150 MHz), Avance-500 (1H: 500 MHz; 13C: 125 MHz) and Avance-400 (1H: 400 MHz; 13C: 100 MHz) NMR Spectrometer. Chemical shifts are reported in ppm and referenced to the corresponding residual protons in deuterated solvents. 31P NMR spectroscopy measurements were performed on a Bruker Avance-600 (31P: 242 MHz) and Avance-500 (31P: 203 MHz) spectrometer. Size Exclusion Chromatography (SEC) analyses were carried out using a Shimadzu pump and Shimadzu UV and RI detectors, with tetrahydrofuran (THF) as the eluent, and a set of Polymer Standards columns (AM GPC gel, 10 µm, precolumn, 300 Å and linear mixed bed). Commercially available PS standards were used. The flow rate used for all measurements was 1 mL/min. M_n^{app} and PDI^{app} represent the apparent
number-average molecular weight, and apparent polydispersity index, respectively. The ESI mass spectra were obtained using an Agilent 1100 series Capillary LCMSD Trap SCT Spectrometer using methanol solutions of the products. Elemental Analysis (EA) (CHN) experiments were performed by Atlantic Microlab, Inc. (Norcross, GA, USA).

Synthesis bifunctional initiator

4-((11-((tetrahydro-2H-pyran-2-yl)oxy)undecyl)oxy)benzaldehyde (2)

![Chemical structure of 2]

To a solution of compound 1 (6.12 g, 18.24 mmol) in DMF (30 mL), 4-hydroxybenzaldehyde (2.90 g, 23.71 mmol) and K$_2$CO$_3$ (7.56 g, 54.71 mmol) were added. The mixture was stirred for 12 h at 90 °C. The DMF was removed *in vacuo*, the residue was dissolved in dichloromethane and washed with water (2 x 30 mL). The organic layer was dried (MgSO$_4$) and concentrated. Purification was carried out by column chromatography (hexanes / ethyl acetate = 4 : 1) to afford 2 (6.48 g, 94%).

1H-NMR (600 MHz; CDCl$_3$): δ 9.86 (s, 1H, HCOAr), 7.81 (d, J = 8.9 Hz, 2H, ArH), 6.97 (d, J = 8.7 Hz, 2H, ArH), 4.57 (dd, J = 4.5, 3.0 Hz, 1H, CH$_2$OCH), 4.02 (t, J = 6.6 Hz, 2H, ArOCH$_2$), 3.86 (ddd, J = 11.2, 7.8, 3.3 Hz, 1H, OCH$_2$ of tetrahydropyran), 3.72 (dt, J = 9.6, 6.9 Hz, 1H, OCH$_2$ of tetrahydropyran), 3.49 (dt, J = 11.1, 5.5 Hz, 1H, CH$_2$-O-tetrahydropyran), 3.37 (dt, J = 9.6, 6.7 Hz, 1H, CH$_2$-O-tetrahydropyran), 1.85-1.77 (m, 3H), 1.73-1.68 (m, 1H), 1.61-1.30 (m, 20H). 13C NMR (151 MHz; CDCl$_3$): δ 190.8, 164.3, 132.2, 132.0, 129.8, 114.8, 68.5, 67.7, 62.4, 30.9, 29.8, 29.61, 29.57, 29.53, 29.4, 29.1, 26.3, 26.0, 25.6, 19.8. MS-ESI (M+Na)$^+$ m/z calcd for C$_{23}$H$_{36}$O$_4$Na: 399.25, found 399.2. Elemental anal calcd for C$_{23}$H$_{36}$O$_4$: C 73.37, H 9.64; found C 73.23, H 9.67.

2-((11-(4-vinylphenoxy)undecyl)oxy)tetrahydro-2H-pyran (3)

![Chemical structure of 3]

Methyltriphenylphosphonium bromide (6.61 g, 18.49 mmol) and potassium tert-butoxide (2.08 g, 18.49 mmol) were dissolved in THF (30 mL). The reaction was stirred at 25 °C
for 30 min. To this solution, compound 2 (6.33 g, 16.81 mmol) was added as a solution in THF (5 mL). After the mixture was stirred at 25 °C for 1 h, water (150 mL) was added and the THF was evaporated. The mixture was extracted with dichloromethane, and the combined organic layers were dried (MgSO₄) and concentrated. Compound 3 was purified by column chromatography (hexanes / ethyl acetate = 19 : 1) to yield 5.35 g (85% yield).

\(^1\)H NMR (600 MHz, CDCl₃): \(\delta \) 7.33 (d, \(J = 8.4 \) Hz, 2H, ArH), 6.85 (d, \(J = 8.7 \) Hz, 2H, ArH), 6.66 (dd, \(J = 17.6, 10.9 \) Hz, 1H, \(CH_2=CH\)), 5.60 (d, \(J = 18.6 \) Hz, 1H, \(CH_2=CH\)), 5.11 (d, \(J = 11.8 \) Hz, 1H, \(CH_2=CH\)), 3.95 (t, \(J = 4.5, 2.9 \) Hz, 1H, \(CH_2OCH\)), 3.52-3.48 (m, 1H, \(CH_2-O-tetrahydropyran\)), 3.38 (dt, \(J = 9.6, 6.7 \) Hz, 1H, \(OCH_2\) of tetrahydropyran), 3.38 (dt, \(J = 9.6, 6.7 \) Hz, 1H, \(CH_2-O-tetrahydropyran\)), 1.86-1.69 (m, 4H), 1.62-1.29 (m, 20H). \(^13\)C NMR (151 MHz, CDCl₃): \(\delta \) 159.1, 136.4, 130.4, 127.5, 114.6, 111.5, 99.0, 68.2, 67.9, 62.5, 31.0, 29.91, 29.72, 29.70, 29.68, 29.63, 29.54, 29.41, 26.4, 26.2, 25.7, 19.9. MS-ESI (M+Na)\(^+\) m/z calcd for C\(_{24}\)H\(_{38}\)O\(_3\)Na: 397.27, found 397.3.

Elemental anal calcd for C\(_{15}\)H\(_{16}\)O\(_2\): C 76.96, H 10.23; found C 76.68, H 10.14.

11-(4-vinylphenoxy)undecan-1-ol (4)

\[
\text{\begin{align*}
\text{11}\text{H NMR (600 MHz, CDCl}₃\text{): } \delta \text{ 7.33 (d, } J = 8.5 \text{ Hz, 2H, ArH), 6.85 (d, } J = 8.8 \text{ Hz, 2H, ArH), 6.66 (dd, } J = 17.6, 10.9 \text{ Hz, 1H, } CH_2=CH\text{), 5.60 (d, } J = 17.6 \text{ Hz, 1H, } CH_2=CH\text{), 5.11 (d, } J = 11.8 \text{ Hz, 1H, } CH_2=CH\text{), 3.95 (t, } J = 6.6 \text{ Hz, 2H, ArOCH}_2\text{), 3.64 (t, } J = 6.6 \text{ Hz, 2H, CH}_2OH\text{), 1.80-1.75 (m, 2H, OCH}_2CH_3\text{), 1.59-1.54 (m, 2H), 1.47-1.29 (m, 14H).}
\text{13C NMR (151 MHz, CDCl}₃\text{): } \delta \text{ 159.0, 136.4, 130.3, 127.4, 114.6, 111.5, 68.1, 63.1, 60.7, 46.8, 40.8, 31.9, 29.91, 29.54, 26.6, 26.4, 25.0, 19.9. MS-ESI (M+Na)\(^+\) m/z calcd for C\(_{24}\)H\(_{38}\)O\(_3\)Na: 397.27, found 397.3.}
\end{align*}}
\]

Electronic Supplementary Material (ESI) for Polymer Chemistry
This journal is © The Royal Society of Chemistry 2013
32.9, 29.70, 29.65, 29.62, 29.49, 29.37, 26.1, 25.9. MS-ESI (M+Na)\(^+\) m/z calcd for C\(_{10}\)H\(_{30}\)O\(_2\)Na: 313.21, found 313.1. Elemental anal calcd for C\(_{19}\)H\(_{30}\)O\(_2\): C 78.57, H 10.41; found C 76.48, H 10.41.

Bifunctional initiator (5)

11-(4-vinylphenoxy)undecan-1-ol 4 (0.3 g, 1.03 mmol) and Grubbs’ first-generation initiator (1.28 g, 1.55 mmol) were dissolved in anhydrous, degassed CH\(_2\)Cl\(_2\) (15 mL) under an argon atmosphere and stirred at 25 °C for 30 min. The product was purified by column chromatography (hexanes / ethyl acetate = 4 : 1) to yield 651 mg of purple solid (62 % yield).

\(^1\)H NMR (600 MHz, CDCl\(_3\)): \(\delta\) 19.42 (s, 1H, Ru=CH), 8.39 (br s, 2H, o-H of Ar), 6.79 (d, \(J = 9.1\) Hz, 2H, m-H of Ar), 3.98 (t, \(J = 6.6\) Hz, 2H, ArOCH\(_2\)), 3.63 (dt, \(J = 9.2, 5.9\) Hz, 2H, CH\(_2\)OH), 2.59 (m, 6H), 1.79-1.15 (m, 78H). \(^{13}\)C NMR (101 MHz, CDCl\(_3\)): \(\delta\) 159.9, 147.8, 134.1, 114.4, 68.4, 63.3, 33.0, 32.4, 29.90, 29.80, 29.74, 29.73, 29.64, 29.59, 29.3, 28.1, 26.8, 26.2, 26.0. \(^{31}\)P NMR (243 MHz, CDCl\(_3\)): \(\delta\) 34.8 (PCy\(_3\)).

Elemental anal calcd for C\(_{54}\)H\(_{94}\)O\(_2\)Cl\(_2\)P\(_2\)Ru: C 64.26, H 9.39; found C 64.65, H 9.52.

Monomer synthesis

5-Norbornene-2-carboxylic acid benzyl ester (7)

Exo-bicyclo[2.2.1]hept-5-ene-2-carboxylic acid (1.0 g, 7.24 mmol), benzyl alcohol (939 mg, 8.69 mmol), \(N\)-(3-dimethylaminopropyl)-\(N\)'-ethylcarbodiimide hydrochloride (2.08 g, 10.86 mmol) and 4-dimethylaminopyridine (catalytic amount) were dissolved in dichloromethane (10 mL). After the mixture was stirred at 25 °C for 12 h, water (30 mL) was added and the mixture was extracted with dichloromethane (3 x 30 mL). The combined organic layers were washed with water, dried over MgSO\(_4\), filtered, and
concentrated under reduced pressure to give a yellow oil that was further purified by column chromatography on silica gel in hexanes/EtOAc (9 : 1) to yield 1.53 g of 7 as a clear oil (93% yield). 1H NMR (500 MHz, CDCl$_3$): δ7.39-7.31 (m, 5H, CH$_2$ArH), 6.11 (dq, J = 22.7 Hz, 3.0 Hz, 2H, CH=CH), 5.14 (d, 1H, J = 1.0 Hz, CH$_2$ArH), 3.07 (s, 1H, CH=CHCH), 2.93 (s, 1H, CH=CHCH2), 2.30-2.27 (m, 1H, CHCH$_2$CHCH), 1.95 (dt, J = 11.9 Hz, 4.0 Hz, 1H, CHCH$_2$CHCOO), 1.57-1.53, (m, 1H, CHCH$_2$CHCOO), 1.41-1.36 (m, 2H, CH=CHCHCH$_2$). 13C NMR (151 MHz, CDCl$_3$): δ175.93, 138.08, 138.00, 136.26, 135.73, 135.60, 128.49, 128.46, 127.99, 66.26, 46.64, 46.55, 46.34, 43.13, 43.10, 41.68, 41.57, 30.36, 30.33. MS-ESI (M+Na)$^+$ m/z calcd for C$_{13}$H$_{16}$O$_2$Na: 251.10, found 250.9. Elemental anal calcd for C$_{13}$H$_{16}$O$_2$: C 78.92, H 7.06; found C 78.89, H 7.12.

Polymer synthesis

General homopolymerization procedure of norbornene (8)
The desired amount of norbornene monomer 7 was dissolved in anhydrous, degassed CH$_2$Cl$_2$. A solution of bifunctional initiator 5 in CH$_2$Cl$_2$ was added. The monomer concentration after addition of bifunctional initiator 5 was 0.1 M. The solution was stirred at 25 °C for 30 min. Upon complete polymerization, ethyl vinyl ether was added to quench the polymerization. The residue was purified by repeated precipitation into MeOH.

General homopolymerization procedure of l-lactide (9)
In a glove box, the desired amount of l-lactide and bifunctional initiator 5 were dissolved in anhydrous, degassed CH$_2$Cl$_2$. 1,5,7-Triazabicyclo[4.4.0]dec-5-ene (TBD) was added as a solution in CH$_2$Cl$_2$. The monomer concentration after addition of TBD was 1 M. The reaction was allowed to stir at 25 °C for 12 hours. After the reaction was complete, excess benzoic acid was added to quench the polymerization. The polymer was isolated and purified by repeated precipitations into MeOH.
General copolymerization of L-lactide and norbornene (10)

In a glove box, norbornene monomer 7 was dissolved in anhydrous, degassed CH2Cl2 in a screw-top vial. A solution of bifunctional initiator 5 in CH2Cl2 was added and the reaction was allowed to stir at room temperature for 1 hour. A solution of L-lactide monomer in CH2Cl2 and a solution of TBD in CH2Cl2 were added to the PNB solution. The monomer (L-lactide) concentration after addition of all components was 0.1 M. The reaction was allowed to stir at room temperature for 12 hours. Ethyl vinyl ether and benzoic acid were added to quench the polymerization. The residue was purified by repeated precipitation into MeOH.
Initiator characterization

Figure SI 1. 1H NMR spectrum (CDCl$_3$, 400 MHz) of 4-[[11-((tetrahydro-2H-pyran-2-yl)oxy)undecyl]oxy]benzaldehyde (2).

Figure SI 2. 13C NMR spectrum (CDCl$_3$, 100 MHz) of 4-((11-((tetrahydro-2H-pyran-2-yl)oxy)undecyl)oxy)benzaldehyde (2).
Figure SI 3. 1H NMR spectrum (CDCl$_3$, 400 MHz) of 2-((11-(4-vinylphenoxy)undecyl)oxy)tetrahydro-2H-pyran (3).

Figure SI 4. 13C NMR spectrum (CDCl$_3$, 100 MHz) of 2-((11-(4-vinylphenoxy)undecyl)oxy)tetrahydro-2H-pyran (3).
Figure SI 5 1H NMR spectrum (CDCl$_3$, 400 MHz) of 11-(4-vinylphenoxy)undecan-1-ol (4).

Figure SI 6. 13C NMR spectrum (CDCl$_3$, 100 MHz) of 11-(4-vinylphenoxy)undecan-1-ol (4).
Figure SI 7. 1H NMR spectrum (CDCl$_3$, 600 MHz) of bifunctional initiator 5.

Figure SI 8. 13C NMR spectrum (CDCl$_3$, 100 MHz) of bifunctional initiator 5.
Figure SI 9. 31P NMR spectrum (CDCl$_3$, 243 MHz) of bifunctional initiator 5.

- **(A)** Initiator 5 : TBD = 1 : 0
- **(B)** Initiator 5 : TBD = 1 : 0.5
- **(C)** Initiator 5 : TBD = 1 : 1
- **(D)** Initiator 5 : TBD = 1 : 2
- **(E)** Initiator 5 : TBD = 1 : 5

Figure SI 10. 31P NMR spectrum of bifunctional initiator 5 in the presence of A: 0, B: 0.5, C: 1, D: 2 and E: 5 eq. of TBD.
Monomer characterization

Figure SI 11. 1H NMR spectrum (CDCl$_3$, 500 MHz) of monomer 7.

Figure SI 12. 13C NMR spectrum (CDCl$_3$, 151 MHz) of monomer 7.
Polymer characterization

Figure SI 15. 1H NMR spectrum (CDCl$_3$, 600 MHz) of PNB homopolymer 8.

Figure SI 16. 13C NMR spectrum (CDCl$_3$, 150 MHz) of PNB homopolymer 8.
Figure SI 13. 1H NMR spectrum (CDCl$_3$, 600 MHz) of PLA homopolymer 9.

Figure SI 14. 13C NMR spectrum (CDCl$_3$, 151 MHz) of PLA homopolymer 9.
Figure SI 17. 1H NMR spectrum (CDCl$_3$, 600 MHz) of PNB-b-PLA block copolymer 10.

Figure SI 18. 13C NMR spectrum (CDCl$_3$, 150 MHz) of PNB PNB-b-PLA block copolymer 10.
Table SI 1. Characterization data of PLA (SEC, THF, PS standard, RI detection) for 9a-9e.

<table>
<thead>
<tr>
<th>Polymer</th>
<th>[M]LA</th>
<th>[I]</th>
<th>Conversion</th>
<th>conv•[M] / [I]</th>
<th>M_n app $\times 10^3$ g/mol</th>
<th>PDI app</th>
</tr>
</thead>
<tbody>
<tr>
<td>9a</td>
<td>50</td>
<td>1</td>
<td>97%</td>
<td>49</td>
<td>3.6</td>
<td>2.37</td>
</tr>
<tr>
<td>9b</td>
<td>100</td>
<td>1</td>
<td>77%</td>
<td>77</td>
<td>5.7</td>
<td>3.34</td>
</tr>
<tr>
<td>9c</td>
<td>150</td>
<td>1</td>
<td>70%</td>
<td>105</td>
<td>7.2</td>
<td>2.08</td>
</tr>
<tr>
<td>9d</td>
<td>200</td>
<td>1</td>
<td>50%</td>
<td>100</td>
<td>6.6</td>
<td>2.36</td>
</tr>
<tr>
<td>9e</td>
<td>250</td>
<td>1</td>
<td>41%</td>
<td>103</td>
<td>7.1</td>
<td>2.01</td>
</tr>
</tbody>
</table>

Figure SI 19. M_n app of PLA homopolymers as determined by SEC (THF, RI detection) as a function of the conversion and [M]/[I].
Figure SI 20. SEC chromatograms (THF, RI detection) of PLA homopolymers 9a (black), 9b (red), 9c (blue), 9d (purple), and 9e (green).

Figure SI 21. SEC chromatograms (THF, RI detection) of PNB homopolymers 8. Monomer to initiator ratios are: 25 (black), 50 (red), 100 (blue), 150 (purple), 200 (green), and 250 (pink).