Supplementary Information

Water-Soluble Conjugated Polymer Brush with Multihydroxy Dendritic Side Chains

Li Zhou, Junlong Geng, Guan Wang, Jie Liu, Bin Liu*

Department of Chemical and Biomolecular Engineering, 4 Engineering Drive 4,

National University of Singapore, 117576, Singapore
Fig. S1 TGA curves of PFBT-Br, PFBT-OH, PFBT-g-HPG, PFBT-g-HPG-COOH and PFBT-g-HPG-OA.
The technique of inverse-gated 13C NMR can produce carbon signals of high qualities despite the decoupling of 1H, because of long delay time up to 10 s and high number of scans. Since the dendritic, linear and terminal carbons caused signals with different chemical shifts, their inverse-gated 13C NMR spectrum offered the opportunity to calculate the degree of branching. The mechanism for measuring DB of hyperbranched polyglycerol by inverse-gated 13C NMR measurement can be found in literature (A. Sunder, R. Hanselmann, H. Frey, R. Mühlaupt, *Macromolecules*, 1999, **32**, 4240–4246.).

Fig. S2

Inverse-gated 13C NMR spectrum of PFBT-g-HPG (solvent: DMSO-d_6).
Fig. S3 TEM image of PFBT-g-HPG prepared from aqueous solution at high magnification.

Fig. S4 AFM height (a) and phase (b) images of PFBT-g-HPG prepared from aqueous solution.
Fig. S5

![Graph](image1.png)

Fig. S5 LLS result of PFBT-g-HPG in DMF water at [RU] = 20 µM.

Fig. S6

![Image](image2.png)

Fig. S6 3D confocal fluorescence image of cell line MCF–7 with incubation of PFBT-g-HPG ([RU] = 1µM) for 2 h.
Fig. S7

Confocal fluorescence image (a) and bright-field image (b) of cell line MCF–7 without incubation of PFBT-g-HPG.
Fig. S8

(a) 1H NMR spectra of PFBT-g-HPG-COOH (a) (solvent: CD$_3$OD) and PFBT-g-HPG-OA (b) (solvent: CDCl$_3$).

(b) 1H NMR spectra of PFBT-g-HPG-COOH (a) (solvent: CD$_3$OD) and PFBT-g-HPG-OA (b) (solvent: CDCl$_3$).