Supporting information

Optical and electrical properties of dithienothiophene based conjugated polymers: Medium donor vs weak, medium, and strong acceptor

Bijitha Balan," ChakkoothVijayakumar," Akinori Saeki,*ab Yoshiko Koizumi,ac Masashi Tsuji,a and Shu Seki*aa

"Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan. Fax: +81-6-6879-4586; Tel: +81-6-6879-4587;

bPRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan;

cFunctional Soft Matter Research Group, RIKEN Advanced Science Institute, 2-1Hirosawa, Wako, Saitama 351-0198, Japan.

E-mail: saeki@chem.eng.osaka-u.ac.jp, seki@chem.eng.osaka-u.ac.jp
Figure S1. (A) FP-TRMC transients ($\lambda_{ex} = 355$ nm) of Pw with different weight percentages of PDI films (0-20 wt %) relative to 100 wt % of Pw. (B) Corresponding transient absorption spectra ($\lambda_{ex} = 355$ nm) with the kinetic traces at 720 nm shown in the inset.

Table S1. FP-TRMC and TAS values of Pm with different wt % of PDI

<table>
<thead>
<tr>
<th>Wt % PDI</th>
<th>$\phi \Sigma \mu_{max}$ (10$^{-4}$ cm2/Vs)</th>
<th>ϕ</th>
<th>$\Sigma \mu$ (10$^{-2}$ cm2/Vs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 wt%</td>
<td>2.0</td>
<td>1.3 x 102</td>
<td>1.6</td>
</tr>
<tr>
<td>5 wt%</td>
<td>2.7</td>
<td>1.4 x 102</td>
<td>1.9</td>
</tr>
<tr>
<td>10 wt%</td>
<td>3.0</td>
<td>1.5 x 102</td>
<td>2.0</td>
</tr>
<tr>
<td>20 wt%</td>
<td>4.2</td>
<td>1.8 x 102</td>
<td>2.4</td>
</tr>
</tbody>
</table>

$\Sigma \mu = 2.0 \times 10^{-2}$

Table S2. FP-TRMC and TAS values of Pw with different wt % of PDI

<table>
<thead>
<tr>
<th>Wt % PDI</th>
<th>$\phi \Sigma \mu_{max}$ (10$^{-4}$ cm2/Vs)</th>
<th>ϕ</th>
<th>$\Sigma \mu$ (10$^{-2}$ cm2/Vs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 wt%</td>
<td>0.37</td>
<td>5.0 x 10$^{-3}$</td>
<td>0.74</td>
</tr>
<tr>
<td>10 wt%</td>
<td>0.40</td>
<td>6.6 x 10$^{-3}$</td>
<td>0.61</td>
</tr>
<tr>
<td>20 wt%</td>
<td>0.49</td>
<td>1.6 x 10$^{-2}$</td>
<td>0.31</td>
</tr>
</tbody>
</table>

$\Sigma \mu = 5.5 \times 10^{-3}$
Figure S2. Normalized fluorescence spectra of P_{s2} in chloroform ($\lambda_{\text{exc}} = 600$ nm)

Figure S3. Cyclic voltammogram of P_{s2} in film state.
Figure S4. (A) and (C) show the output characteristics of P_w and P_{s2} respectively with $W = 3000 \, \mu m$ and $L = 100$ and $50 \, \mu m$ respectively for P_w and P_{s2}. (B) and (D) are the transfer characteristics of P_w and P_{s2}.