Cyclic and Spirocyclic Polyacetal Ethers from Lignin-Based Aromatics
Alexander G. Pemba, Mayra Rostagno, Tanner A. Lee and Stephen A. Miller*

The George and Josephine Butler Polymer Research Laboratory, Department of Chemistry, University of Florida
Gainesville, Florida 32611-7200, USA

Electronic Supplementary Information (ESI)

Supplementary Information Available: Complete polymer characterization data.

Table of Contents

Summary of Polymerization Data ... S2
Gel Permeation Chromatography (GPC) Analysis ... S3
Differential Scanning Calorimetry (DSC) Thermograms S10
Thermogravimetric Analysis (TGA) Thermograms .. S14
1H NMR Spectra ... S18
13C NMR Spectra ... S22
Fourier Transform Infrared Spectroscopy (FTIR) Spectra S26
Degradation Studies via Dynamic Light Scattering (DLS) S28
Summary of Polymerization Data

Table S1. Thermal and molecular weight data for spirocyclic (1–4) and cyclic (5–8) polyacetal ethers.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Polymer</th>
<th>Yield (%)</th>
<th>M_w (Da)</th>
<th>M_n (Da)</th>
<th>PDI</th>
<th>T_g (°C)</th>
<th>T_m (°C)</th>
<th>T_{95} (°C)</th>
<th>Residue (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>P-BB</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>n.o.</td>
<td>n.o.</td>
<td>328</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>P-VV</td>
<td>90</td>
<td>23,700</td>
<td>10,600</td>
<td>2.2</td>
<td>129</td>
<td>n.o.</td>
<td>308</td>
<td>19</td>
</tr>
<tr>
<td>3</td>
<td>P-SS</td>
<td>90</td>
<td>36,000</td>
<td>18,600</td>
<td>1.9</td>
<td>152</td>
<td>n.o.</td>
<td>307</td>
<td>17</td>
</tr>
<tr>
<td>4</td>
<td>P-EE</td>
<td>83</td>
<td>47,800</td>
<td>18,500</td>
<td>2.6</td>
<td>108</td>
<td>n.o.</td>
<td>326</td>
<td>23</td>
</tr>
<tr>
<td>5</td>
<td>D-BB</td>
<td>81</td>
<td>3,500</td>
<td>2,600c</td>
<td>1.4</td>
<td>n.o.</td>
<td>259</td>
<td>349</td>
<td>8.3</td>
</tr>
<tr>
<td>6</td>
<td>D-VV</td>
<td>90</td>
<td>44,200</td>
<td>22,200</td>
<td>2.0</td>
<td>80</td>
<td>n.o.</td>
<td>327</td>
<td>8.2</td>
</tr>
<tr>
<td>7</td>
<td>D-SS</td>
<td>90</td>
<td>34,600</td>
<td>21,600</td>
<td>1.6</td>
<td>98</td>
<td>n.o.</td>
<td>320</td>
<td>12</td>
</tr>
<tr>
<td>8</td>
<td>D-EE</td>
<td>83</td>
<td>42,100</td>
<td>19,300</td>
<td>2.2</td>
<td>68</td>
<td>n.o.</td>
<td>333</td>
<td>10</td>
</tr>
</tbody>
</table>

*Polymerization conducted in refluxing methylene chloride at 40 °C, except as noted. Molecular weight data obtained by GPC in hexafluoroisopropanol (HFIP) solvent. For DSC data, n.o. indicates a thermal transition not observed. *Polymerization conducted in refluxing 1,1,2,2-tetrachloroethane at 146 °C. Although insolubility prevented GPC analysis for P-BB, 1H NMR spectroscopy confirmed the absence of aldehydic hydrogens characteristic of the monomer. *Thermogravimetric analysis conducted under nitrogen; temperature reported upon 5% mass loss; residue (%) reported at end of TGA experiment. *Acidity of HFIP degraded the sample before GPC analysis of D-BB. Nonetheless, 1H NMR spectroscopy confirmed the absence of aldehydic hydrogens characteristic of the monomer.
Gel Permeation Chromatography (GPC) Analysis (in hexafluoroisopropanol, HFIP)

<table>
<thead>
<tr>
<th>Peak</th>
<th>Mp</th>
<th>Mn</th>
<th>Mw</th>
<th>Mz</th>
<th>Mz+1</th>
<th>Mv</th>
<th>PD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak 1</td>
<td>22636</td>
<td>10601</td>
<td>23713</td>
<td>35882</td>
<td>49249</td>
<td>34180</td>
<td>2.237</td>
</tr>
</tbody>
</table>

Peak information

<table>
<thead>
<tr>
<th></th>
<th>Start (mins)</th>
<th>End (mins)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline region 1</td>
<td>21.79</td>
<td>24.79</td>
</tr>
<tr>
<td>Baseline region 2</td>
<td>52.23</td>
<td>55.23</td>
</tr>
<tr>
<td>Peak 1</td>
<td>30.00</td>
<td>39.47</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Peak</th>
<th>Trace</th>
<th>Peak Max RT (mins)</th>
<th>Peak Area (mV s)</th>
<th>Peak Height (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak 1</td>
<td>RI</td>
<td>33.96</td>
<td>8261878.103</td>
<td>35693.014</td>
</tr>
</tbody>
</table>

Chromatogram

Figure S1. GPC Chromatogram of P-VV (Table S1, entry 2).
Figure S2. GPC Chromatogram of P-SS (Table S1, entry 3).
Figure S3. GPC Chromatogram of P-EE (Table S1, entry 4).
Figure S4. GPC Chromatogram of D-BB (Table S1, entry 5).
Figure S5. GPC Chromatogram of D-VV (Table S1, entry 6).
Figure S6. GPC Chromatogram of D-SS (Table S1, entry 7).
Figure S7. GPC Chromatogram of D-EE (Table S1, entry 8).
Differential Scanning Calorimetry (DSC) Thermograms

Figure S8. DSC Thermogram of P-BB (Table S1, entry 1).

Figure S9. DSC Thermogram of P-VV (Table S1, entry 2).
Figure S10. DSC Thermogram of P-SS (Table S1, entry 3).

Figure S11. DSC Thermogram of P-EE (Table S1, entry 4).
Figure S12. DSC Thermogram of D-BB (Table S1, entry 5).

Figure S13. DSC Thermogram of D-VV (Table S1, entry 6).
Figure S14. DSC Thermogram of D-SS (Table S1, entry 7).

Figure S15. DSC Thermogram of D-EE (Table S1, entry 8).
Thermogravimetric Analysis (TGA) Thermograms

Figure S16. TGA Thermogram of P-BB (Table S1, entry 1).

Figure S17. TGA Thermogram of P-VV (Table S1, entry 2).
Figure S18. TGA Thermogram of P-SS (Table S1, entry 3).

Figure S19. TGA Thermogram of P-EE (Table S1, entry 4).
Figure S20. TGA Thermogram of D-BB (Table S1, entry 5).

Figure S21. TGA Thermogram of D-VV (Table S1, entry 6).
Figure S22. TGA Thermogram of D-SS (Table S1, entry 7).

Figure S23. TGA Thermogram of D-EE (Table S1, entry 8).
1H NMR Spectra

Figure S24. 1H NMR spectra of **BB** (top, red trace) and **D-BB** (black, bottom trace) in TCE-\(d_2\). Absence of the aldehydic proton (ca. 10 ppm) in the **D-BB** trace suggests that the monomer (**BB**) has been completely consumed and has been converted to high molecular weight polymer.

Figure S25. 1H NMR spectrum of **P-VV** in DMSO-\(d_6\) (Table S1, entry 2).
Figure S26. 1H NMR spectrum of P-SS in DMSO-d$_6$ (Table S1, entry 3).

Figure S27. 1H NMR spectrum of P-EE in DMSO-d$_6$ (Table S1, entry 4).

Figure S28. 1H NMR spectrum of D-BB in TCE-d$_2$ (Table S1, entry 5).
Figure S29. 1H NMR spectrum of D-VV in TCE-d_2 (Table S1, entry 6).

Figure S30. 1H NMR spectrum of D-SS in TCE-d_2 (Table S1, entry 7).
Figure S31. 1H NMR spectrum of D-EE in TCE-d_2 (Table S1, entry 8).
13C NMR Spectra

Figure S32. 13C NMR spectrum of P-VV in DMSO-d_6 (Table S1, entry 2).

Figure S33. 13C NMR spectrum of P-SS in DMSO-d_6 (Table S1, entry 3).
Figure S34. 13C NMR spectrum of P-EE in DMSO-d_6 (Table S1, entry 4).

Figure S35. 13C NMR spectrum of D-BB in TCE-d_2 (Table S1, entry 5).
Figure S36. 13C NMR spectrum of D-VV in TCE-d_2 (Table S1, entry 6).

Figure S37. 13C NMR spectrum of D-SS in TCE-d_2 (Table S1, entry 7).
Figure S38. 13C NMR spectrum of D-EE in TCE-d_2 (Table S1, entry 8).
Fourier Transform Infrared Spectroscopy (FTIR) Spectra

Figure S39. Comparative FTIR spectra for **BB** (monomer), **P-BB**, and **D-BB**.

Figure S40. Comparative FTIR spectra for **BB** (monomer), **P-BB**, and **D-BB** for carbonyl area (magnified), showing no carbonyl peak in either polymer.
Figure S41. Comparative FTIR spectra for VV (monomer), P-VV, and D-VV.

Figure S42. Comparative FTIR spectra for SS (monomer), P-SS, and D-SS.

Figure S43. Comparative FTIR spectra for EE (monomer), P-EE, and D-EE.
Degradation Studies via Dynamic Light Scattering (DLS)

Figure S44. Degradation studies of P-VV / DMSO solution with 0.5% aqueous concentrated HCl.

Figure S45. Degradation studies of P-VV / DMSO solution with 0.5% 2M aqueous HCl.

Figure S46. Degradation studies of D-VV / DMSO solution with 0.5% aqueous concentrated HCl.
Figure S47. Degradation studies of D-VV / DMSO solution with 0.5% 2M aqueous HCl.