SUPPORTING INFORMATION FOR:

π-conjugated sulfonium-based photoacid generators: an integrated molecular approach for efficient one and two-photon polymerization

Ming Jin,* a Hong Hong,a Jianchao Xie,a Jean Pierre Malval,*b, Arnaud Spangenberg b, Olivier Soppera b, Decheng Wan,a Hongting Pu a, Davy-Louis Versace c, Tiffanie Leclerc b, Patrice Baldeck d, Olivier Poizat c and Stephan Knopf b.

a School of Materials Science and Engineering, Tongji University, Shanghai 201804, P.R. China.
b Institut de Science des Matériaux de Mulhouse, UMR CNRS 7361, Université de Haute-Alsace, 15 rue Jean Starcky, 68057 Mulhouse, France.
c Institut de Chimie et des Matériaux Paris-Est, UMR 7182, 2-8 rue Henri Dunant, 94320 Thiais.

Université Paris-Est Créteil Val de Marne, France.
d Laboratoire de Spectrométrie Physique, UMR CNRS 5588. Université Joseph Fourier, 38402 Saint Martin d’Hères, France.
c Laboratoire de Spectrochimie Infrarouge et Raman, UMR CNRS 8516. Université des Sciences et Technologies de Lille. 59655 Villeneuve d’Ascq Cedex

Contact: mingjin@tongji.edu.cn or jean-pierre.malval@uha.fr

CONTENTS

I. Some photophysical and photochemical characterization

II. Figures
I. Photophysical and photochemical characterizations

Methods for the determination of quantum yield for acid generation. The quantum yields for acid generation were determined upon irradiation at 405 nm using LED spotlight source (Uvata, Shanghai) equipped with a band pass filter. All irradiated PAGs dissolved in acetonitrile were previously N$_2$-degassed. The progress of the photoreaction was monitored via UV–vis absorption spectra. The absorbance at the excitation wavelength ($A_{405\text{ nm}}$) was greater than 2.5 to assume a total absorption of the incident photons. The dose rates were kept sufficiently small so that the changes of $A_{405\text{ nm}}$ were lower than 10%. The Rhodamine B (RhB) was used as a sensor of photoacid generation. The acid generation in acetonitrile was also evaluated from a calibration curve of RhB which was gradually protonated by addition of p-toluenesulfonic acid, and its molar extinction coefficient is 116000 M$^{-1}$ cm$^{-1}$ at 555 nm.

Photoacid quantum yields were calculated according the equation:

$$
\Phi_{H^+} = \frac{V_{sol} N_A}{I_{cell} S_{irr} I_0 (1 - 10^{-\Delta A_{405\text{ nm}}})} \left(\frac{\text{d}A_{555\text{ nm}}}{\text{d}t} \right)
$$

Where V_{sol}, l_{cell} and S_{irr} correspond to the volume of the irradiated solution, the optical path and the irradiated surface respectively. N_A is the Avogadro number. $A_{555\text{ nm}}$ and $\varepsilon_{555\text{ nm}}$ correspond to the absorbance and the extinction coefficient of RhB. Finally, the incident light intensity at 405 nm (I_0) were measured by ferrioxalate actinometry.

Methods for the determination of the maximum polymerization rates. The polymerization rates ($R_p/[M_0]$) were determined according to the maximum value of the first derivative of the FT-RTIR curves.

Reversed-phase HPLC using a BetaBasic-18 column was analyzed by Agilent technologies 1200 series and detected at 350 nm with acetonitrile/methanol (9/1, V/V) as fluent.

Photolysis of Para-Bz with TEA and identification of Photoproducts. A 2 mL sample of a 0.05 M solution of Para-Bz and 10 eq. TEA in acetonitrile in a glass vessel was purged with nitrogen for 30 min, sealed, and irradiated for 1 h with a 405 nm LED lamp (1 mW/cm2). The reaction mixture was poured into 5 mL of water and extracted twice with 10 mL of CH$_2$Cl$_2$. Half of the combined extract was concentrated to 10 mL under reduced pressure and analyzed by HPLC and MS. And another part was evaporated and dried in vacuum to test 1H NMR and compared with precursor, PrP.
II. Figures

Figure S1. Growth of a fluorescence band during the photolysis of Para-Bz in acetonitrile. (λ_{exc}: 405 nm).

Figure S2. Normalized absorption spectra of precursors in acetonitrile.
Figure S3. Evolution of 1H NMR spectra Para-Bz without (a) and with Et$_3$N (b) upon irradiation at 405 nm (2.0 mW cm$^{-2}$). (Solvent: CD$_3$CN).
Figure S4. 1HNMR spectra of photoproducts (top) and PrP (bottom) in CDCl$_3$.
Figure S5. HPLC and MS spectra of the final photoproducts generated upon photolysis of Para-Bz in presence of TEA (10 eq.) in acetonitrile.
Figure S6. Evolution of the absorption spectra of the PAG upon irradiation at 405 nm (0.25 mW cm\(^{-2}\)). (Solvent: acetonitrile).
Figure S7. Conversion vs. time curves for cationic photopolymerization of CHO containing PAG (1 % wt). (λ_{exc}: 405 nm).
Figure S8. Two-photon polymerization voxels obtained with point-by-point exposures at various exposure powers (λ_{exc}: 800 nm, exposure duration: 10 ms. Diepoxide resin containing 0.4 wt % of PAG.). Scale bars: 5 µm.