Supporting information for

From Glycidyl Carbonate to Hydroxyurethane Side-groups in Alternated Fluorinated Copolymers

Roukaya Hamiye,[a] Ali Alaaeddine,[b] Benjamin Campagne,[b] Sylvain Caillol,[b] Sophie M. Guillaume,[a,*] Bruno Ameduri,[b,*] and Jean-François Carpentier[a,*]

Contents

Figure S1: 1H NMR spectrum of a poly[(CTFE-alt-GCVE) (P1)] copolymer

Figure S2: 13C{1H} NMR spectrum of a poly[(CTFE-alt-GCVE) (P1)] copolymer

Figure S3: ATR-FTIR spectrum of a poly[(CTFE-alt-GCVE) (P1)] copolymer

Figure S4: 1H NMR spectrum of a poly[(CTFE-alt-EVE)-co-(CTFE-alt-GCVE)] (P2) terpolymer

Figure S5: 13C{1H} NMR spectrum of a poly[(CTFE-alt-EVE)-co-(CTFE-alt-GCVE)] (P2) terpolymer

Figure S6: 19F{1H} NMR spectrum of a poly[(CTFE-alt-CEVE)-co-(CTFE-alt-GCVE)] (P3) terpolymer

Figure S7: ATR-FTIR spectrum of a poly[(CTFE-alt-CEVE)-co-(CTFE-alt-GCVE)] (P3) terpolymer

Figure S8: ATR-FTIR spectrum of PFHU P4

Figure S9: ATR-FTIR monitoring of the ring-opening of poly(CTFE-alt-GCVE) (P1) copolymer by isopropylamine into PFHU P4

Figure S10: 1H NMR spectrum of PFHU P4/P4*

Figure S11: 13C{1H} and DEPT-135 13C NMR spectra of PFHU P4/P4*

Figure S12: 13C-1H HMQC NMR spectrum of PFHU P4/P4*

Figure S13: ATR-FTIR spectrum of PFHU P5

Figure S14: ATR-FTIR spectrum of PFHU P6

Figure S15: 1H NMR spectrum of PFHU P5/P5*

Figure S16: 1H-1H COSY NMR spectrum of PFHU P5/P5*

Figure S17: 13C{1H} NMR spectrum of PFHU P5/P5*
Figure S18: Details of the 13C{1H} and DEPT-135 13C NMR spectra of PFHU P5/P5*

Figure S19: 1H NMR spectrum of PFHU P6/P6*

Figure S20: 1H-1H COSY NMR spectrum of PFHU P6/P6*

Figure S21: 13C{1H} NMR spectrum of PFHU P6/P6*

Figure S22: Details of the 13C{1H} and DEPT-135 13C NMR spectra of PFHU P6/P6*

Figure S23: 13C-1H HMQC NMR spectrum of PFHU P6/P6*

Figure S24: DSC trace of a poly[(CTFE-alt-GCVE) (P1) copolymer

Figure S25: DSC trace of a poly[(CTFE-alt-EVE)-co-(CTFE-alt-GCVE)] (P2) terpolymer

Figure S26: DSC trace of a poly[(CTFE-alt-CEVE)-co-(CTFE-alt-GCVE)] (P3)

Figure S27: DSC trace of PFHU P4

Figure S28: DSC trace of PFHU P5

Figure S29: DSC trace of PFHU P6

Figure S30: TGA trace of a poly[(CTFE-alt-GCVE) (P1) copolymer

Figure S31: TGA trace of a poly[(CTFE-alt-EVE)-co-(CTFE-alt-GCVE)] (P2) terpolymer

Figure S32: TGA trace of a poly[(CTFE-alt-CEVE)-co-(CTFE-alt-GCVE)] (P3) terpolymer

Figure S33: TGA trace of PFHU P4

Figure S34: TGA trace of PFHU P5
Figure S1: 1H NMR spectrum (400 MHz, acetone-d_6, 298 K) of a poly[(CTFE-alt-GCVE) (P1) copolymer; signals with ** markers correspond to initiating groups (tBu) and minor impurities. * stands for residual solvent resonance.
Figure S2: $^{13}\text{C}\{^1\text{H}\}$ NMR spectrum (100 MHz, acetone-d_6, 298 K) of a poly[(CTFE-alt-GCVE) (P1)] copolymer; signals with ** markers correspond to initiating groups (tBu) and minor impurities. * stands for residual solvent resonance.
Figure S3: ATR-FTIR spectrum of a poly[(CTFE-alt-GCVE) (P1) copolymer.
Figure S4: 1H NMR spectrum (400 MHz, acetone-d_6, 298 K) of a poly[(CTFE-alt-EVE)-co-(CTFE-alt-GCVE)] (P2) terpolymer; high-field signals with ** markers correspond to initiating groups (tBu) and minor impurities. * stands for residual solvent resonance.
Figure S5: 13C-1H NMR spectrum (100 MHz, acetone-d_6, 298 K) of a poly[(CTFE-alt-EVE)-co-(CTFE-alt-GCVE)] (P2) terpolymer; signals with ** markers correspond to initiating groups (tBu) and minor impurities. * stands for residual solvent resonance.
Figure S6: 19F{$_1^1$H} NMR spectrum (376 MHz, acetone-d_6, 298 K) of a poly[(CTFE-alt-CEVE)-co-(CTFE-alt-GCVE)] (P3) terpolymer.
Figure S7: ATR-FTIR spectrum of a poly[(CTFE-alt-CEVE)-co-(CTFE-alt-GCVE)] (P3) terpolymer.
Figure S8: ATR-FTIR spectrum of PFHU P4 obtained via ring-opening of poly(CTFE-alt-GCVE) (P1) copolymer by isopropylamine.
Figure S9: ATR-FTIR monitoring of the ring-opening of poly(CTFE-alt-GCVE) (P1) copolymer by isopropylamine into PFHU P4 (reaction ran in CH$_2$Cl$_2$ at 50 °C).
Figure S10: 1H NMR spectrum (400 MHz, acetone-d_6, 298 K) of PFHU P4/P4* obtained via ring-opening of poly(CTFE-alt-GCVE) (P1) copolymer by isopropylamine; high-field signals with ** markers correspond to initiating groups (tBu) and minor impurities, * stands for residual solvent resonance.
Figure S11: Details of the $^{13}\text{C}^{1}\text{H}$ (bottom) and DEPT-135 ^{13}C (top) NMR spectra (100 MHz, acetone-d_6, 298 K) of PFHU P4/P4* obtained via ring-opening of poly(CTFE-alt-GCVE) (P1) copolymer by isopropylamine.
Figure S12: 13C-1H HMQC NMR spectrum (400 MHz, acetone-d_6, 20 ºC) of PFHU P4/P4* obtained via ring-opening of poly(CTFE-alt-GCVE) (P1) copolymer by isopropylamine. Main correlations for the major regioisomer are shown.
Figure S13: ATR-FTIR spectrum of PFHU P5 obtained via ring-opening of poly[(CTFE-alt-EVE)-co-(CTFE-alt-GCVE)] (P2) terpolymer by isopropylamine
Figure S14: ATR-FTIR spectrum of PFHU P6 obtained via ring-opening of poly[(CTFE-alt-CEVE)-co-(CTFE-alt-GCVE)] (P3) terpolymer by isopropylamine.
Figure S15: 1H NMR spectrum (400 MHz, acetone-d_6, 298 K) of PFHU P5/P5* obtained via ring-opening of poly[(CTFE-alt-EVE)-co-(CTFE-alt-GCVE)] (P2) terpolymer by isopropylamine; high-field signals with ** markers correspond to initiating groups (tBu) and minor impurities. * stands for residual solvent resonance.
Figure S16: 1H-1H COSY NMR spectrum (400 MHz, acetone-d_6, 298 K) of PFHU P5/P5* obtained via ring-opening of poly[(CTFE-alt-EVE)-co-(CTFE-alt-GCVE)] (P2) terpolymer by isopropylamine.
Figure S17. 13C(1H) NMR spectrum (100 MHz, acetone-d_6, 20 °C) of PFHU P5/P5* obtained via ring-opening of poly[(CTFE-alt-EVE)-co-(CTFE-alt-GCVE)] (P2) terpolymer by isopropylamine; signals with ** markers correspond to initiating groups (tBu) and minor impurities. * stands for residual solvent resonance.
Figure S18: Details of the 13C-1H (bottom) and DEPT-135 13C (top) NMR spectra (100 MHz, acetone-d_6, 298 K) of PFHU P5/P5* obtained via ring-opening of poly[(CTFE-alt-EVE)-co-(CTFE-alt-GCVE)] (P2) terpolymer by isopropylamine.
Figure S19: 1H NMR spectrum (400 MHz, acetone-d_6, 298 K) of PFHU P6/P6* obtained via ring-opening of poly[(CTFE-alt-CEVE)-co-(CTFE-alt-GCVE)] (P3) terpolymer by isopropylamine.
Figure S20: 1H-1H COSY NMR spectrum (400 MHz, acetone-d_6, 298 K) of PFHU P6/P6* obtained via ring-opening of poly[(CTFE-alt-CEVE)-co-(CTFE-alt-GCVE)] (P3) terpolymer by isopropylamine.
Figure S21: 13C{¹H} NMR spectrum (100 MHz, acetone-d_6, 20 °C) of PFHU P6/P6* obtained via ring-opening of poly[(CTFE-alt-CEVE)-co-(CTFE-alt-GCVE)] (P3) terpolymer by isopropylamine; signals with ** markers correspond to initiating groups (iBu) and minor impurities. * stands for residual solvent resonance.
Figure S22: Details of the 13C-1H (bottom) and DEPT-135 13C (top) NMR spectra (100 MHz, acetone-d_6, 298 K) of PFHU P6/P6* obtained via ring-opening of poly[(CTFE-alt-CEVE)-co-(CTFE-alt-GCVE)] (P3) terpolymer by isopropylamine
Figure S23: 13C-1H HMQC NMR spectrum (400 MHz, acetone-d_6, 20 ºC) of PFHU P6/P6* obtained via ring-opening of poly[(CTFE-alt-CEVE)-co-(CTFE-alt-GCVE)] (P3) terpolymer by isopropylamine. Main correlations for the major regioisomer are shown.
Figure S24: DSC trace (−20 to 100 °C; 20 °C.min\(^{-1}\), 2\(^{nd}\) cycle) of a poly[(CTFE-alt-GCVE) (P1)] copolymer.

Figure S25: DSC trace (−50 to 200 °C; 20 °C.min\(^{-1}\), 2\(^{nd}\) cycle) of a poly[(CTFE-alt-EVE)-co-(CTFE-alt-GCVE)] (P2) terpolymer.
Figure S26: DSC trace (−50 to 100 °C; 20 °C.min⁻¹, 2nd cycle) of a poly[(CTFE-alt-CEVE)-co-(CTFE-alt-GCVE)] (P3).

Figure S27: DSC trace (−40 to 90 °C; 10 °C.min⁻¹, 2nd cycle) of PFHU P4 obtained via ring-opening of a poly[(CTFE-alt-GCVE)] (P1) copolymer.
Figure S28: DSC trace (−50 to 90 °C; 20 °C.min⁻¹, 2nd cycle) of PFHU P5 obtained via ring-opening of a poly[(CTFE-alt-EVE)-co-(CTFE-alt-GCVE)] (P2) terpolymer.

Figure S29: DSC trace (−50 to 100 °C; 20 °C.min⁻¹, 2nd cycle) of PFHU P6 obtained via ring-opening of poly[(CTFE-alt-CEVE)-co-(CTFE-alt-GCVE)] (P3) terpolymer by isopropylamine.
Figure S30: TGA trace of a poly[(CTFE-alt-GCVE) (P1) copolymer

Figure S31: TGA trace of a poly[(CTFE-alt-EVE)-co-(CTFE-alt-GCVE)] (P2) terpolymer
Figure S32: TGA trace of a poly[(CTFE-alt-CEVE)-co-(CTFE-alt-GCVE)] (P3)

Figure S33: TGA trace of PFHU P4
Figure S34: TGA trace of PFHU P5