Supplementary Information

Optimization of the RAFT Polymerization Conditions for the in Situ Formation of Nano-objects via Dispersion Polymerization in Alcoholic Medium

Wei Zhao,1 Guillaume Gody,2 Siming Dong,4 Per B. Zetterlund4 and Sébastien Perrier2,3*

1 Key Centre for Polymers & Colloids, School of Chemistry, Building F11, The University of Sydney, NSW 2006, Australia.
2 Department of Chemistry, The University of Warwick, CV4 7AL, UK.
3 Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, VIC 3052, Australia
4 Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
Correspondence to Tel: +44 (0)2476 528085; Fax: +44 (0)2476 524112;
E-mail: s.perrier@warwick.ac.uk

Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2014
Figure S1. SEC chromatogram ($w(\log M)$ vs. $\log M$) of P(PEGA₄₅₄)-TTC macro-RAFT agent obtained by RAFT polymerization at 70°C in dioxane. [PEGA454]₀: [PABTC]₀: [V501]₀ = 60 : 1 : 0.1. DMF was used as the eluent.

Figure S2. SEC chromatogram ($w(\log M)$ vs. $\log M$) of P(PEGA₄₅₄)-TTC macro-RAFT agent obtained by RAFT polymerization at 80 °C in dioxane. [PEGA₄₅₄]₀: [PABTC]₀: [VA-088]₀ = 60 : 1 : 0.1. DMF was used as the eluent.
Figure S3. SEC chromatograms (w(logM) vs. logM) of P(PEGA_{454})-TTC macro-RAFT agent obtained by RAFT polymerization at 60 °C, [PABTC]_0 : [V501]_0 = 8 (straight line) and 70 °C, [PABTC]_0 : [V501]_0 = 34 (desh line) in H₂O : dioxane = 9 : 1, [PEGA_{454}]_0 : [PABTC]_0 = 60 : 1. DMF was used as the eluent.

Figure S4. SEC chromatograms (w(logM) vs. logM) of P(PEGA_{454})-TTC macro-RAFT agent obtained by RAFT polymerization at 44 °C in H₂O : dioxane = 9 : 1, [PEGA_{454}]_0 : [PABTC]_0 : [VA-044]_0 = 60 : 1 : 0.03. DMF was used as the eluent.