Supporting Information

Tuning multiple arms for camptothecin and folate conjugations on star-shaped copolymers to enhance glutathione-mediated intracellular drug delivery

Yun Zhang,¹ Maohua Chen,¹ Xiaoming Luo, Hong Zhang, Chaoyu Liu, Huiyan Li, Xiaohong Li*

Key Laboratory of Advanced Technologies of Materials, Ministry of Education of China, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China

¹ These authors contributed equally to the work.
* Corresponding Author. School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China. Tel: +8628-87634068, Fax: +8628-87634649.
e-mail: xhli@swjtu.edu.cn.

1
Fig. S1. 1H-NMR spectra of (A) 4-arm-PEG, (B) 4-arm-PEG-NH$_2$, (C) Boc protected (Boc-PEG)$_2$-c-(PEG)$_2$, (D) ε-CL copolymerized (Boc-PEG)$_2$-c-(PECL)$_2$ and (E) CPT conjugated (Boc-PEG)$_2$-c-(PECL-SS-CPT)$_2$.
Fig. S2. GPC elution profiles of 4-arm-PEG-NH$_2$ and Boc-protected 4-arm-PECL used for the preparation of P240 copolymers ((Boc-PEG)$_2$-c-(PECL)$_2$).
Fig. S3. 1H-NMR spectra of P140, P160, P340 and P320 copolymers with FA and CPT conjugated.
Fig. S4. I339/I333 band intensity ratios of pyrene as a function of logarithm concentrations of P140, P240, P340 and P160 micelles.