Ethylene Carbonate/Cyclic Ester Random Copolymers Synthesized by Ring-Opening Polymerization

William Guerin, a Marion Helou, b Martine Slawinski, b Jean-Michel Brusson, c Jean-François Carpentier a and Sophie M. Guillaume a,*

a Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS-Université de Rennes 1, Campus de Beaulieu, F-35042 Rennes Cedex, France

b Total Raffinage Chimie Feluy, Zone Industrielle Feluy C, B-7181 Seneffe, Belgium

c Total S.A., Corporate Science, Tour Michelet A, 24 Cours Michelet - La Défense 10, 92069 Paris La Défense Cedex, France

* Corresponding author: sophie.guillaume@univ-rennes1.fr
Supporting Information

List of figures

Figure S1. 1H NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of a commercial PEC ($M_n = 250 000$ g.mol$^{-1}$, $D_M = 1.9$) prepared from CO$_2$/ethylene oxide copolymerization.

Figure S2. 13C NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of a commercial PEC ($M_n = 250 000$ g.mol$^{-1}$, $D_M = 1.9$) prepared from CO$_2$/ethylene oxide copolymerization.

Figure S3. 1H NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of a copolymer synthesized by copolymerization of EC/CL mediated by Al(OTf)$_3$/BnOH (Table 1, entry 12).

Figure S4. 13C{1H} NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of a copolymer synthesized by copolymerization of EC/CL mediated by Al(OTf)$_3$/BnOH (Table 1, entry 12).

Figure S5. 13C NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of a P(EC-co-BL) synthesized from [(NNO)ZnEt] and featuring 26 mol% of inserted EC (Table 1, entry 4) (* stands for residual EC).

Figure S6. Carbonyl region of the 13C{1H} NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of a mixture of a P(EC-co-CL) featuring 28 mol% of inserted EC (Table 1, entry 14) and a commercial PEC ($M_n = 250 000$ g.mol$^{-1}$, $D_M = 1.9$) prepared from CO$_2$/ethylene oxide copolymerization.

Figure S7. DSC trace of a P(EC-co-BL) featuring 26 mol% of EC (Table 1, entry 4).

Figure S8. DSC trace of a P(EC-co-VL) featuring 13 mol% of EC (Table 1, entry 7).

Figure S9. DSC trace of a P(EC-co-LLA) featuring 7 mol% of EC (Table 2, entry 5).
Figure S1. 1H NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of a commercial PEC ($M_n = 250$ 000 g.mol$^{-1}$, $D_M = 1.9$) prepared from CO$_2$/ethylene oxide copolymerization.

Figure S2. 13C NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of a commercial PEC ($M_n = 250$ 000 g.mol$^{-1}$, $D_M = 1.9$) prepared from CO$_2$/ethylene oxide copolymerization.
Figure S3. 1H NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of a copolymer synthesized by copolymerization of EC/CL mediated by Al(OTf)$_3$/BnOH (Table 1, entry 12).

Figure S4. 13C-1H NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of a copolymer synthesized by copolymerization of EC/CL mediated by Al(OTf)$_3$/BnOH (Table 1, entry 12).
Figure S5. 13C NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of a P(EC-co-BL) synthesized from [(NNO)ZnEt] and featuring 26 mol% of inserted EC (Table 1, entry 4) (* stands for residual EC).

Figure S6. Carbonyl region of the 13C{1H} NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of a mixture of a P(CL-co-EC) featuring 28 mol% of inserted EC (Table 1, entry 14) and a commercial PEC ($M_n = 250 000$ g.mol$^{-1}$, $D_M = 1.9$ prepared from CO$_2$/ethylene oxide copolymerization.)
Figure S7. DSC trace of a P(EC-co-BL) featuring 26 mol% of EC (Table 1, entry 4).

Figure S8. DSC trace of a P(EC-co-VL) featuring 13 mol% of EC (Table 1, entry 7).
Figure S9. DSC trace of a P(EC-co-LLA) featuring 9 mol% of EC (Table 2, entry 5).