New tricopper(II) cores self-assembled from aminoalcohol biobuffers and homophthalic acid: synthesis, structural and topological features, magnetic properties and mild catalytic oxidation of cyclic and linear C_5-C_8 alkanes[†]

Sara S. P. Dias,^a Marina V. Kirillova,^a Vânia André,^a Julia Kłak^b and Alexander M. Kirillov^{*a}

^aCentro de Química Estrutural, Complexo I, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal. E-mail: kirillov@ist.utl.pt ^bFaculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wroclaw, Poland

*Electronic supplementary information (ESI)

Electronic supplementary information (ESI) available: TG–DTA plots (Figures S1, S2), additional topological representations (Figures S3, S4), EPR spectra (Figure S5), UV-vis spectra (Figures S6, S7), hydrogen bonding (Table S1) and catalytic (Tables S2–S4, Figure S8) details for **1** and **2**; CCDC 1014687 and 1014688.

Figure S1. TG–DTA plot of 1 (30–750 °C, 10 °C/min, N_2 atmosphere, 8.430 mg sample). Colour codes: TG curve (blue), DTA curve (red).

Figure S2. TG–DTA plot of **2** (30–750 °C, 10 °C/min, N₂ atmosphere, 10.318 mg sample). Colour codes: TG curve (blue), DTA curve (red).

Figure S3. Topological representation of the underlying (first simplification) 3D H-bonded network in 1 showing a binodal 4,8-connected net with the unique topology defined by the point symbol of $(3^{4}.4^{10}.5^{6}.6^{7}.7)_{2}(3^{4}.4^{2})$. Centroids of 8-connected $[Cu_{3}(\mu_{2}-H_{3}bis-tris)_{2}(\mu_{2}-Hhpa)_{2}]$ molecular nodes (green balls), centroids of 4-connected H₂O (O1w) nodes (red); view along the *c* axis.

Figure S4. Topological representation of the underlying (first simplification) 2D H-bonded network in **2** showing a very complex hexanodal 3,3,4,4,4,-c net with the unique topology defined by the point symbol of $(3.4.5.6^2.7)(3.4.5)(3.4.6.7^3)(3.4.6^2.7^2)(3.6.7^3.8)(3.7^2)$. Copper nodes (3-connected Cu1, 4-connected Cu2) and linkers (2-connected Cu3) (green balls), centroids of 3- and 4-connected H₂tea nodes (blue), centroids of 4-connected hpa nodes (grey); view along the *a* axis.

Figure S5. EPR (X-band) spectra of powdered samples 1 and 2 at 77 K.

Table S1. Hydrogen bonding details for compounds 1 and 2.	
--	--

	Sym. Op.	D–H···A	d(D–H) (Å)	$d(\mathrm{H}^{}\mathrm{A})(\mathrm{\AA})$	$d(D^{\dots}A)(A)$	$D^{\hat{H}}A(^{\circ})$
1	¹ / ₄ +y, 5/4-x, ¹ / ₄ +z	O ₃ -H ₃ …O ₇	0.84	2.20	2.615(11)	110
	¹ / ₄ +y, 5/4-x, ¹ / ₄ +z	O ₃ -H ₃ ···O ₈	0.84	2.57	3.266(13)	141
	5/4-y,-1/4+x, -1/4+z	O ₈ -H ₈₈₈ O ₄	0.91	2.16	2.629(12)	111
	x, y, z	$O_9 – H_{9a} \cdots O_{1w}$	0.84	2.0	2.710(13)	142
2	x, 3/2-y, - ¹ / ₂ +z	O ₁ -H ₀₀₃ O ₁₁	0.77(3)	2.01(3)	2.733(2)	158(3)
	x, 3/2-y, ¹ / ₂ +z	$O_3 - H_{004} - O_7$	0.82(3)	1.82(3)	2.648(2)	178(4)
	x, 5/2-y, - ¹ ⁄ ₂ +z	O_{12} - H_{001} O_{11}	0.77(3)	1.80(3)	2.556(3)	172(3)
	x, 5/2-y, -½+z	O_{13} - H_{002} ··· O_{10}	0.84(3)	1.77(3)	2.602(3)	171(4)

Alkane	Yield, % ^b					
Aikaite	Alcohol(s) ^c	Ketone(s) ^c	Total			
Cyclopentane	1.8	1.0	2.8			
Cyclohexane	$1.7 (1.7)^d$	$1.4(1.3)^d$	$3.1(3.0)^d$			
Cycloheptane	2.3	1.8	4.1			
Cyclooctane	2.1	2.7	4.8			
<i>n</i> -Pentane	1.0	1.1	2.1			
<i>n</i> -Hexane	$1.6 (1.7)^d$	$2.1 (2.0)^d$	$3.7 (3.7)^d$			
<i>n</i> -Heptane	1.4	1.4	2.8			
<i>n</i> -Octane	2.2	1.3	3.5			

Table S2. Mild oxidation of different C₅-C₈ alkanes by the Cu(NO₃)₂/TFA/H₂O₂ system.^a

^{*a*}Reaction conditions: Cu(NO₃)₂ (0.01 mmol), TFA (0.1 mmol), alkane (1.0 mmol), H₂O₂ (50% aq., 5.0 mmol), MeCN (up to 5 mL total volume), 50 °C, 3 h. ^{*b*}Based on alkane substrate, calculated from GC analysis after treatment of the reaction mixture with PPh₃. ^{*c*}In the case of *n*-alkanes, the indicated total product yields correspond to the sum of yields of various isomeric alcohols and ketones (aldehydes), see Table S3 for details. ^{*d*}Values in brackets correspond to the oxidations by the Cu(NO₃)₂/H₂O₂ system without added TFA.

Table	S3.	Isomeric	product	distribution	in	the	mild	oxidation	of	linear	$C_5 - C_8$	alkanes	by	the
1/TFA	$/H_2O$	v_2 and Cu(1	$NO_3)_2/TF$	A/H ₂ O ₂ syste	ems	5. ^{<i>a</i>}								

		Yield, % ^b	
Alkane	Alcohols	Ketones/Aldehyde C(1)	Total
	C(1), C(2), C(3), C(4)	C(1), C(2), C(3), C(4)	Total
	1/TFA/H ₂ O ₂		
<i>n</i> -Pentane	0.6, 4.0, 1.9	0.2, 1.8, 1.0	9.5
<i>n</i> -Hexane	0.6, 2.8, 3.5	0.2, 1.6, 1.3	10.0
<i>n</i> -Heptane	0.8, 3.6, 3.4, 1.8	0.3, 1.7, 1.7, 0.7	14.0
<i>n</i> -Octane	0.8, 3.5, 3.3, 2.7	0.2, 1.4, 1.5, 1.4	14.8
	Cu(NO ₃) ₂ /TFA/H	I_2O_2	
<i>n</i> -Pentane	0.1, 0.6, 0.3	traces, 0.7, 0.4	2.1
<i>n</i> -Hexane	0.2, 0.7, 0.7	0.1, 1.0, 1.0	3.7
<i>n</i> -Heptane	0.1, 0.5, 0.5, 0.3	traces, 0.6, 0.6, 0.2	2.8
<i>n</i> -Octane	0.2, 0.6, 0.7, 0.7	traces, 0.5, 0.4, 0.4	3.5

^{*a*}Reaction conditions: pre-catalyst **1** or Cu(NO₃)₂ (0.01 mmol), TFA (0.1 mmol), alkane (1.0 mmol), H₂O₂ (50% aq., 5.0 mmol), MeCN (up to 5 mL total volume), 50 °C, 3 h. ^{*b*}Based on alkane substrate, calculated from GC analysis after treatment of the reaction mixture with PPh₃.

System	Yield, % ^b						
System	Cyclohexanol	Cyclohexanone	Total				
H ₂ O ₂ (no Cu)	0.1	0.0	0.1				
TFA/H ₂ O ₂ (no Cu)	0.2	0.0	0.2				
Cu(NO ₃) ₂ /H ₂ O ₂	1.7	1.3	3.0				
Cu(NO ₃) ₂ /TFA/H ₂ O ₂	1.7	1.4	3.1				
Cu(NO ₃) ₂ /H ₅ bis-tris/H ₂ hpa/H ₂ O ₂	7.3	4.8	12.1				
Cu(NO ₃) ₂ /H ₃ tea/H ₂ hpa/H ₂ O ₂	8.4	5.9	14.3				
$Cu(NO_3)_2/H_5 bis\text{-tris}/H_2 hpa/TFA/H_2O_2$	8.5 (5.1) ^c	4.9 (2.8) ^c	13.4 (7.9) ^c				
Cu(NO ₃) ₂ /H ₃ tea/H ₂ hpa/TFA/H ₂ O ₂	9.2 (6.9) ^c	6.4 (4.1) ^c	15.6 (10.5) ^c				
1/H ₂ O ₂	0.8	0.4	1.2				
2 /H ₂ O ₂	0.8	0.3	1.1				
1/TFA/H ₂ O ₂	15.9 (15.1) ^d	$4.0(3.6)^d$	19.9 (18.7) ^d				
2 /TFA/H ₂ O ₂	16.0 (15.2) ^d	$4.2 (3.7)^d$	20.2 (18.9) ^d				

Table S4. Mild oxidation of cyclohexane by H_2O_2 with pre-catalysts 1, 2, $Cu(NO_3)_2$ and various model or control systems.^{*a*}

^{*a*} Reaction conditions (unless stated otherwise): pre-catalyst **1** or **2** (0.01 mmol) or Cu(NO₃)₂ (0.01 mmol), TFA (0.1 mmol), aminoalcohol and H₂hpa (0.05 mmol; Cu:aminoalcohol:H₂hpa molar ratio 1:5:5), cyclohexane (1.0 mmol), H₂O₂ (50% aq., 5.0 mmol), MeCN (up to 5 mL total volume), 50 °C, 3 h. ^{*b*}Based on cyclohexane, calculated from GC analysis after treatment of the reaction mixture with PPh₃. ^{*c*}Cu:aminoalcohol:H₂hpa molar ratio 1.5:1:1. ^{*d*}Pre-catalyst **1** or **2** (0.0033 mmol), TFA (0.033 mmol).

Figure S6. Solution UV-vis spectra: (a) 1, (b) 2, (c) 1+TFA, (d) 2+TFA, (e) 1+TFA+H₂O₂ (f) 2+TFA+H₂O₂. Further details: conditions are similar to those of alkane oxidation experiments (Table 2): pre-catalyst 1 or 2 (0.01 mmol), TFA (0.1 mmol), H₂O₂ (50% aq., 5.0 mmol), MeCN (up to 5 mL total volume); (a, b) spectra of 1 (a) and 2 (b) were measured after additional dilution with MeCN/H₂O (1:1 v/v, up to 20 mL total volume) to allow their complete solubilisation, insets provide a closer view of 670–680 nm bands.

Figure S7. UV-vis spectra of Cu(NO₃)₂ and various model solutions: (a) Cu(NO₃)₂, (b) Cu(NO₃)₂+H₂O₂, (c) Cu(NO₃)₂+TFA, (d) Cu(NO₃)₂+TFA+H₂O₂, (e) Cu(NO₃)₂+H₅bis-tris+H₂hpa, (f) Cu(NO₃)₂+H₅bis-tris+H₂hpa+TFA, (g) Cu(NO₃)₂+H₅bis-tris+H₂hpa+TFA+H₂O₂, (h) Cu(NO₃)₂+H₃tea+H₂hpa, (i) Cu(NO₃)₂+H₃tea+H₂hpa+TFA, (j) Cu(NO₃)₂+H₃tea+H₂hpa+TFA+H₂O₂. Further details: conditions are similar to those of alkane oxidation experiments (Table 2): Cu(NO₃)₂ (0.01 mmol), TFA (0.1 mmol), H₂O₂ (50% aq., 5.0 mmol), H₅bis-tris or H₃tea (0.007 mmol), H₂hpa (0.007 mmol), MeCN (up to 5 mL total volume).

Figure S8. Oxidation of cyclohexane to cyclohexanol and cyclohexanone by H_2O_2 showing the evolution of the total product yield with time at different loadings of pre-catalyst 1 and TFA co-catalyst: curve A (0.01 mmol of 1, 0.1 mmol of TFA), curve B (0.0033 mmol of 1, 0.033 mmol of TFA). General conditions: C_6H_{12} (1 mmol), H_2O_2 (50% aq., 5 mmol), 50 °C, MeCN (up to 5 mL).