Supporting Information

Copper(I)-catalyzed enantioselective hydroboration of cyclopropenes: facile synthesis of optically active cyclopropylboronates

Bing Tian,⇑ Qiang Liu,⇑ Xiaofeng Tong,⇑ Ping Tian⇑ and Guo-Qiang Lin⇑

⇑Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
E-mail: tianping@sioc.ac.cn
lingq@sioc.ac.cn

⇑Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.

TABLE OF CONTENTS:

1. GENERAL INFORMATION ... S3
2. SUBSTRATE PREPARATION ... S3
3. X-RAY CRYSTAL STRUCTURE OF 6 .. S6
4. DEUTERATED EXPERIMENT .. S8
5. ¹H NMR, ¹³C NMR, NOSEY & HPLC ... S9
1H NMR, 13C nmr, HPLC, NOSEY COPIES

CYCLOPROPENE SUBSTRATES

1H NMR copy of cyclopropene substrate 1a..................S10
13C NMR copy of cyclopropene substrate 1a.............S11
1H NMR copy of cyclopropene substrate 1b.............S12
13C NMR copy of cyclopropene substrate 1b.............S13
1H NMR copy of cyclopropene substrate 1c.............S14
13C NMR copy of cyclopropene substrate 1c.............S15
1H NMR copy of cyclopropene substrate 1d.............S16
13C NMR copy of cyclopropene substrate 1d.............S17
1H NMR copy of cyclopropene substrate 1e.............S18
13C NMR copy of cyclopropene substrate 1e.............S19
1H NMR copy of cyclopropene substrate 1f.............S20
13C NMR copy of cyclopropene substrate 1f.............S21
1H NMR copy of cyclopropene substrate 1g.............S22
13C NMR copy of cyclopropene substrate 1g.............S23
1H NMR copy of cyclopropene substrate 1h.............S24
13C NMR copy of cyclopropene substrate 1h.............S25
1H NMR copy of cyclopropene substrate 1i.............S26
13C NMR copy of cyclopropene substrate 1i.............S27
1H NMR copy of cyclopropene substrate 1j.............S28
13C NMR copy of cyclopropene substrate 1j.............S29
1H NMR copy of cyclopropene substrate 1k.............S30
13C NMR copy of cyclopropene substrate 1k.............S31
1H NMR copy of cyclopropene substrate 1l.............S32
13C NMR copy of cyclopropene substrate 1l.............S33
1H NMR copy of cyclopropene substrate 1m.............S34
13C NMR copy of cyclopropene substrate 1m.............S35

HYDROBATION PRODUCTS

1H NMR copy of hydroboration product 3a.............S36
13C NMR copy of hydroboration product 3a.............S37
1H NMR copy of hydroboration product 3b.............S38
13C NMR copy of hydroboration product 3b.............S39
1H NMR copy of hydroboration product 3c.............S40
13C NMR copy of hydroboration product 3c.............S41
1H NMR copy of hydroboration product 3d.............S42
13C NMR copy of hydroboration product 3d.............S43
1H NMR copy of hydroboration product 3e.............S44
13C NMR copy of hydroboration product 3e.............S45
1H NMR copy of hydroboration product 3f.............S46
13C NMR copy of hydroboration product 3f.............S47
1H NMR copy of hydroboration product 3g.............S48
13C NMR copy of hydroboration product 3g.............S49
NOSEY copy of hydroboration product 3g.............S50
1H NMR copy of hydroboration product 3h.............S51
13C NMR copy of hydroboration product 3h.............S52
1H NMR copy of hydroboration product 3i.............S53
13C NMR copy of hydroboration product 3i.............S54
1H NMR copy of hydroboration product 3j.............S55
13C NMR copy of hydroboration product 3j.............S56
NOSEY copy of hydroboration product 3j.............S57
1H NMR copy of hydroboration product 3k.............S58
13C NMR copy of hydroboration product 3k.............S59
1H NMR copy of hydroboration product 3m.............S60
13C NMR copy of hydroboration product 3m.............S61
1H NMR copy of hydroboration product 3p.............S62
13C NMR copy of hydroboration product 3p.............S63
NOSEY copy of hydroboration product [D]-3f.............S64

TRANSFORMATION

1H NMR copy of product 5.................................S65
13C NMR copy of product 5.................................S66
1H NMR copy of product 6.................................S67
13C NMR copy of product 6.................................S68

HPLC of HYDROBATION PRODUCTS

HPLC copy of hydroboration product 3a...............S69
HPLC copy of hydroboration product 3b...............S70
HPLC copy of hydroboration product 3c...............S71
HPLC copy of hydroboration product 3d...............S72
HPLC copy of hydroboration product 3e...............S73
HPLC copy of hydroboration product 3f...............S74
HPLC copy of hydroboration product 3g...............S75
HPLC copy of hydroboration product 3h...............S76
HPLC copy of hydroboration product 3i...............S77
HPLC copy of hydroboration product 3j...............S78
HPLC copy of hydroboration product 3k...............S79
HPLC copy of hydroboration product 3m...............S80
HPLC copy of hydroboration product 3p...............S81
HPLC copy of Suzuki-Miyaura coupling product 5.......S82
1. GENERAL INFORMATION

All solvents were dried before use following the standard procedures. Unless otherwise indicated, all starting materials purchased from commercial suppliers were used without further purification. The 1H and 13C NMR spectra were recorded on Bruker AV-400 MHz in the indicated solvents. Chemical shifts are reported in δ (ppm) referenced to an internal TMS standard for 1H NMR and CDCl$_3$ ($\delta = 7.26$ ppm) for 13C NMR. Coupling constants (J) are quoted in Hz. Optical rotations were measured on a JASCO P-1030 polarimeter. IR spectra were recorded on Nicolet iN 10 MX. ESI mass spectra were recorded on Agilent1200/G6100A. HRMS of boron-containing compounds is based on 10B.

2. SUBSTRATE PREPARATION

Cyclopropene 1o was prepared according to the literature procedure.$^{[1]}$

General procedures for the preparation of other cyclopropenes substrates$^{[2-3]}$

\[
\begin{align*}
\text{Ar} & \quad \text{CO}_2\text{Me} \\
\text{TMS} & \quad \text{Rh}_2(\text{OAc})_4 \\
\text{K}_2\text{CO}_3 & \quad \text{THF/H}_2\text{O} \\
0^\circ & \quad \text{C–RT}
\end{align*}
\]

Starting material, methyl diazoarylacetate 11 was prepared according to the literature procedure.$^{[3]}$

A solution of methyl diazoarylacetate (11, 7 mmol, 1.0 equiv) in trimethylsilylacetylene (10 mL) was added via syringe pump over 16 h to a stirred mixture of Rh$_2$(OAc)$_4$ (1 mol%) in trimethylsilylacetylene (5 mL). After the addition was complete, the reaction mixture was stirred at room temperature for additional 12 h. Then the trimethylsilylacetylene was removed under reduced pressure to give the crude product 12.

Crude material 12 was dissolved in THF (15 mL) and stirred at 0°C. 10% aqueous K$_2$CO$_3$ (10 mL) was added dropwise, and the reaction mixture was stirred at room temperature for 5 h, when the reaction completed. Ethyl acetate (20 mL) and water (20 mL) were added to the mixture, aqueous phase was separated, and the water layer was extracted with ethyl acetate (50 mL \times 3), the combined organic phase was washed by brine (100 mL), dried (MgSO$_4$), filtered, and evaporated. The residue was purified by silica gel column chromatography (eluent: n-hexane / EtOAc = 15:1) to give pure cyclopropene products 1.

Methyl 1-phenylcycloprop-2-enecarboxylate (1a)$^{[3]}$

Light yellow oil, 640 mg, 52% yield for two steps. 1H NMR (400 MHz, CDCl$_3$) δ (ppm) 7.33–7.24 (m, 5H), 7.22 (s, 2H), 3.70 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ (ppm) 175.52, 141.44, 128.16, 128.13, 126.59, 107.68 (2C), 52.25, 30.58 ESI-MS: [M+Na]$^+$ 197.1; HRMS (FTMS-ESI): [M+Na]$^+$ calcld for C$_{11}$H$_{10}$O$_2$Na$^+$ 197.0573, found 197.0565; IR (KBr) ν (cm$^{-1}$) 3155, 3113, 3058, 3025, 2951, 1724, 1662, 1601, 1495, 1435, 1228, 1113, 1021, 1009, 998, 892, 791, 762, 738, 699.

Methyl 1-p-tolylcycloprop-2-ene carboxylate (1b)

Light yellow oil, 315 mg, 24% yield for two steps. \(^1H\) NMR (400 MHz, CDCl\(_3\)) \(\delta\) (ppm) 7.20 (s, 2H), 7.17–7.10 (m, 4H), 3.69 (s, 3H), 2.32 (s, 3H); \(^{13}C\) NMR (100 MHz, CDCl\(_3\)) \(\delta\) (ppm) 175.71, 138.50, 136.22, 128.86, 128.03, 107.84 (2C), 52.24, 30.28, 21.05; ESI-MS: [M+Na]\(^+\) 211.1; HRMS (FTMS-ESI): [M+Na]\(^+\) calcd for C\(_{12}\)H\(_{12}\)O\(_2\)Na\(^+\) 211.0730, found 211.0734; IR (KBr) \(\nu\) (cm\(^{-1}\)) 3128, 3088, 3053, 3001, 2948, 2925, 2840, 1710, 1651, 1515, 1434, 1292, 1219, 1033, 1019, 1003, 899, 863, 812, 741, 638, 547.

Methyl 1-(4-methoxyphenyl)cycloprop-2-ene carboxylate (1c)

Yellow oil, 250 mg, 18% yield for two steps. \(^1H\) NMR (400 MHz, CDCl\(_3\)) \(\delta\) (ppm) 7.21 (s, 2H), 7.18 (d, \(J = 8.8\) Hz, 2H), 6.84 (d, \(J = 8.8\) Hz, 2H), 3.78 (s, 3H), 3.69 (s, 3H); \(^{13}C\) NMR (100 MHz, CDCl\(_3\)) \(\delta\) (ppm) 175.81, 158.25, 133.66, 129.23, 113.57, 107.92 (2C), 55.23, 52.25, 29.92; ESI-MS: [M+Na]\(^+\) 227.1; HRMS (FTMS-ESI): [M+Na]\(^+\) calcd for C\(_{12}\)H\(_{12}\)O\(_2\)Na\(^+\) 227.0679, found 227.0677; IR (KBr) \(\nu\) (cm\(^{-1}\)) 3151, 3109, 3005, 2958, 2840, 1713, 1663, 1611, 1516, 1442, 1436, 1250, 1223, 1119, 926, 829, 806, 771, 626, 550.

Methyl 1-(4-(trifluoromethyl)phenyl)cycloprop-2-ene carboxylate (1d)

Yellow oil, 863 mg, 51% yield for two steps. \(^1H\) NMR (400 MHz, CDCl\(_3\)) \(\delta\) (ppm) 7.56 (d, \(J = 8.0\) Hz, 2H), 7.39 (d, \(J = 8.0\) Hz, 2H), 7.21 (s, 2H), 3.71 (s, 3H); \(^{13}C\) NMR (100 MHz, CDCl\(_3\)) \(\delta\) (ppm) 174.79, 145.41, 129.02, 128.90, 125.15 (q, \(J_{CF} = 3.8\) Hz), 122.95, 107.24 (2C), 52.47, 30.42; ESI-MS: [M+H]\(^+\) 243.0; HRMS (FTMS-ESI): [M+Na]\(^+\) calcd for C\(_{12}\)F\(_3\)H\(_3\)O\(_2\)Na\(^+\) 265.0447, found 265.0447; IR (KBr) \(\nu\) (cm\(^{-1}\)) 3120, 2955, 1727, 1666, 1618, 1436, 1409, 1327, 1292, 1225, 1165, 1120, 1069, 1014, 872, 833, 796, 767, 606.

Methyl 1-(4-fluorophenyl)cycloprop-2-ene carboxylate (1e)

Yellow oil, 445 mg, 34% yield for two steps. \(^1H\) NMR (400 MHz, CDCl\(_3\)) \(\delta\) (ppm) 7.26–7.20 (m, 2H), 7.20 (s, 2H), 7.00–6.95 (m, 2H), 3.69 (s, 3H); \(^{13}C\) NMR (100 MHz, CDCl\(_3\)) \(\delta\) (ppm) 175.32, 161.55 (d, \(J_{CF} = 243.7\) Hz), 137.23 (d, \(J_{CF} = 3.8\) Hz), 129.80 (d, \(J_{CF} = 8.3\) Hz, 2C), 114.92 (d, \(J_{CF} = 20.5\) Hz, 2C), 107.67 (2C), 52.30, 29.89; ESI-MS: [M+ Na]\(^+\) 215.1; HRMS (FTMS-ESI): [M+Na]\(^+\) calcd for C\(_{12}\)H\(_9\)F\(_2\)O\(_2\)Na\(^+\) 215.0479, found 215.0488; IR (KBr) \(\nu\) (cm\(^{-1}\)) 3433, 3158, 3117, 2999, 2953, 2844, 1724, 1660, 1604, 1510, 1435, 1293, 1224, 1030, 1006, 870, 832, 625, 544.

Methyl 1-(4-chlorophenyl)cycloprop-2-ene carboxylate (1f)

Light yellow oil, 728 mg, 50% yield for two steps. \(^1H\) NMR (400 MHz, CDCl\(_3\)) \(\delta\) (ppm) 7.27 (d, \(J = 8.0\) Hz, 2H), 7.22–7.19 (m, 4H), 3.70 (s, 3H); \(^{13}C\) NMR (100 MHz, CDCl\(_3\)) \(\delta\) (ppm) 175.05, 139.96, 132.37, 129.61, 128.22, 107.42 (2C), 52.32, 29.98; ESI-MS: [M+H]\(^+\) 209.1; HRMS (FTMS-ESI): [M+Na]\(^+\) calcd for C\(_{12}\)H\(_9\)Cl\(_2\)O\(_2\)Na\(^+\) 231.0183, found 231.0186; IR (KBr) \(\nu\) (cm\(^{-1}\)) 3432, 3153, 3114, 2959, 2849, 1725, 1686, 1657, 1488, 1436, 1280, 1236, 1086, 1005, 996, 875, 789, 748, 614, 548, 464.
Methyl 1-(4-bromophenyl)cycloprop-2-ene-carboxylate (1g)

Light yellow oil, 243 mg, 35% yield for two steps. 1H NMR (400 MHz, CDCl$_3$) δ (ppm) 7.42 (d, J = 8.4 Hz, 2H), 7.19 (s, 2H), 7.15 (d, J = 8.4 Hz, 2H), 3.70 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ (ppm) 174.98, 140.49, 131.16, 129.99, 120.50, 107.36 (2C), 52.33, 30.05; ESI-MS: [M+Na]$^+$ 274.9; HRMS (FTMS-ESI): [M+Na]^+ calcld for C$_{11}$H$_8$BrO$_2$Na$^+$ 274.9678, found 274.9687; IR (KBr) ν (cm$^{-1}$) 3152, 3114, 3043, 3025, 2956, 1725, 1656, 1483, 1436, 1412, 1280, 1237, 1069, 1030, 1005, 897, 876, 788, 746, 718, 612.

Methyl 1-(3-bromophenyl)cycloprop-2-ene-carboxylate (1h)

Light yellow oil, 413 mg, 24% yield for two steps. 1H NMR (400 MHz, CDCl$_3$) δ (ppm) 7.40 (s, 1H), 7.35 (d, J = 8.0 Hz, 1H), 7.23–7.14 (m, 4H), 3.70 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ (ppm) 174.80, 143.80, 131.33, 129.68, 129.65, 126.95, 122.16, 107.32 (2C), 52.36, 30.17; ESI-MS: [M+H]^+ 253.0; HRMS (FTMS-ESI): [M+Na]^+ calcld for C$_{11}$H$_8$BrO$_2$Na$^+$ 274.9678, found 274.9671; IR (KBr) ν (cm$^{-1}$) 3157, 3116, 2997, 2950, 2848, 1940, 1724, 1661, 1593, 1564, 1476, 1434, 1223, 1033, 1011, 738, 711, 604.

Methyl 1-(2-bromophenyl)cycloprop-2-ene-carboxylate (1i)

Light yellow oil, 552 mg, 32% yield for two steps. 1H NMR (400 MHz, CDCl$_3$) δ (ppm) 7.54–7.51 (m, 1H), 7.33 (s, 2H), 7.29–7.09 (m, 3H), 3.67 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ (ppm) 175.07, 141.71, 132.60, 130.23, 128.65, 127.63, 125.18, 108.78 (2C), 52.55, 32.31; ESI-MS: [M+Na]^+ 275.0; HRMS (FTMS-ESI): [M+Na]^+ calcld for C$_{11}$H$_8$BrO$_2$Na$^+$ 274.9678, found 274.9683; IR (KBr) ν (cm$^{-1}$) 3430, 3139, 3097, 3065, 2950, 2838, 1731, 1651, 1589, 1466, 1432, 1285, 1225, 1051, 1023, 877, 745, 650, 562.

Methyl 1-(naphthalen-2-yl)cycloprop-2-ene-carboxylate (1j)

Light yellow oil, 564 mg, 36% yield. 1H NMR (400 MHz, CDCl$_3$) δ (ppm) 7.81–7.60 (m, 3H), 7.66 (s, 1H), 7.45–7.41 (m, 3H), 7.29 (s, 2H), 3.72 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ (ppm) 175.60, 139.08, 133.31, 132.28, 127.72, 127.65, 127.59, 126.73, 126.61, 125.99, 125.67, 107.89 (2C), 52.33, 30.77; ESI-MS: [M+H]^+ 225.1; HRMS (FTMS-ESI): [M+H]^+ calcld for C$_{15}$H$_9$O$_2$ 225.0910, found 225.0905; IR (KBr) ν (cm$^{-1}$) 3155, 3114, 3055, 3019, 1950, 1724, 1661, 1631, 1434, 1243, 1214, 1186, 1035, 1013, 818, 749, 635, 613.

Methyl 1-(3,4-dichlorophenyl)cycloprop-2-ene-carboxylate (1k)

Light yellow oil, 300 mg, 20% yield for two steps. 1H NMR (400 MHz, CDCl$_3$) δ (ppm) 7.37–7.35 (m, 2H), 7.18 (s, 2H), 7.14–7.12 (m, 1H), 3.70 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ (ppm) 174.57, 141.88, 130.43, 130.09, 127.84, 107.19 (2C), 52.52, 29.82; ESI-MS: [M+Na]^+ 265.0; HRMS (FTMS-ESI): [M+ Na]^+ calcld for C$_{11}$H$_3$Cl$_2$O$_2$ Na$^+$ 264.9794, found 264.9788; IR (KBr) ν (cm$^{-1}$) 3429, 3160, 3119, 2951, 2848, 1726, 1663, 1471, 1435, 1292, 1252, 1223, 1135, 1031, 887, 813, 741, 616, 598, 440.
Methyl 1-(3,5-difluorophenyl)cycloprop-2-enecarboxylate (1m)

Yellow oil, 350 mg, 23% yield. 1H NMR (400 MHz, CDCl$_3$) δ (ppm) 7.15 (s, 2H), 6.81 (d, $J = 7.2$ Hz, 2H), 6.60 (t, $J = 9.2$ Hz, 1H), 3.71 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ (ppm) 174.30, 164.14, 145.63, 111.36, 106.82 (2C), 102.44, 52.49, 30.19; ESI-MS: [M+H]$^+$ 211.2; HRMS (FTMS-ESI) [M+Na]$^+$ calcd for C$_{11}$H$_8$F$_2$O$_2$Na$^+$ 233.0385, found 233.0377.

Ethyl 1-methylcycloprop-2-enecarboxylate (1n).

Preparation of this cyclopropene used the same procedure with literature.[1]

Dimethyl cycloprop-2-ene-1,1-dicarboxylate (1p).[2]

Light yellow oil, 568 mg, 52% yield. 1H NMR (400 MHz, CDCl$_3$) δ (ppm) 6.91 (s, 2H), 3.74 (s, 6H); 13C NMR (100 MHz, CDCl$_3$) δ (ppm) 171.33, 102.41 (2C), 52.45, 29.83; ESI-MS: [M+Na]$^+$ 179.1; HRMS (FTMS-ESI) [M+Na]$^+$ calcd for C$_7$H$_8$O$_4$Na$^+$ 179.0315, found 179.0312; IR (KBr) ν (cm$^{-1}$) 3617, 3167, 3122, 3004, 2956, 2847, 1728, 1671, 1436, 1293, 1192, 1143, 1069, 987, 950, 883, 817, 766, 720, 635, 519.

3. X-RAY CRYSTAL STRUCTURE OF 6

Preparation of the crystal: To a one-neck round-bottomed flask was added 30 mg of product 3g, dissolved with 0.5 mL dichloromethane, added 5.0 mL n-hexane. Then the flask was sealed with rubber plug for two weeks to gives the crystal 6. CCDC 1004894 (6) contains the supplementary crystallographic data. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Colorless crystal, 5 mg. 1H NMR (300 MHz, CDCl$_3$) δ (ppm) 7.50–7.28 (m, 6H), 7.21–7.15 (m, 2H), 3.72 (s, 6H), 2.36 (s, 4H); 13C NMR (100 MHz, CDCl$_3$) δ (ppm) 169.85, 132.20, 131.33, 130.18, 127.85, 122.59, 54.15, 52.55, 30.09.

S6
4. DEUTERATED EXPERIMENT

To probe the 'hydrogen' source of this hydroboration reaction, [D4]-methanol experiment was investigated.

Procedure: A dried Schlenk flask was charged with CuCl (1.5 mg, 0.015 mmol, 10 mol%), (R)-(+-)BINAP (14 mg, 0.0225 mmol, 15 mol%), B2Pin2 (2, 76.2 mg, 0.3 mmol, 2.0 equiv), NaOttBu (1.6 mg, 0.0165 mmol, 11 mol%) and anhydrous toluene (1.0 mL) under nitrogen atmosphere. After the mixture was stirred at room temperature for 40 min, a solution of cyclopropene 1f (0.15 mmol) in anhydrous toluene (0.5 mL) was added, followed by anhydrous [D4]-MeOH (12.2 μL, 0.30 mmol, 2.0 equiv). The resulting mixture was stirred at room temperature for 6h, then filtered through Celite®, and concentrated in vacuo. The residue was purified by silica gel (300–400 mesh) column chromatography to afford the desired product 3f. Deuterated product 3f (50%) was observed, which was proved that the proton partially came from methanol.
5. 1H nmr, 13C nmr, Nosey & HPLC
1H NMR

Solute: CDCl$_3$
1a (13C NMR)
Solvent: CDCl₃
1b (1H NMR)
Solvent: CDCl$_3$
$1c$ (1H NMR)
Solvent: CDCl$_3$
13C NMR
Solvent: CDCl$_3$
1H NMR
Solvent: CDCl₃

F₃C

CO₂Me

2.02
1.95
2.01

7.565
7.545
7.399
7.379
7.213

3.711

-0.000

2.02
1.95
2.01

8 7 6 5 4 3 2 1 0 PPM
13C NMR
Solvent: CDCl$_3$
1e (1H NMR)
Solvent: CDCl₃
S19

1e (13C NMR)
Solvent: CDCl$_3$
1f (1H NMR)
Solvent: CDCl₃
1f (13C NMR)
Solvent: CDCl$_3$
^{1}H NMR
Solvent: CDCl$_3$
13C NMR

Solvent: CDCl$_3$
1^h (1H NMR) Solvent: CDCl$_3$
1^HNMR
Solvent: CDCl$_3$
S27

1^1 (13C NMR)

Solvent: CDCl$_3$
$1^J (^{1}H \text{ NMR})$
Solvent: CDCl$_3$
1k (°H NMR)
Solvent: CDCl₃
13C NMR

Solvent: CDCl$_3$
1m 1H NMR
Solvent: CDCl$_3$
1H (1H NMR)
Solvent: CDCl₃
$\text{MeO}_2\text{C} = \text{CO}_2\text{Me}$

$1^p\{^1\text{H NMR}\}$

Solvent: CDCl$_3$

S34
MeO₂C—CO₂Me

1p (¹³C NMR)
Solvent: CDCl₃

S35
3a (1H NMR)
Solvent: CDCl₃

5.60

8 7 6 5 4 3 2 1 0 PPM

3.601

1.720 1.712 1.695 1.686 1.674 1.612 1.604 1.289 1.052 0.825

0.000
3b (1H NMR)
Solvent: CDCl₃
3c (1H NMR)
Solvent: CDCl₃
$3c$ (13C NMR)

Solvent: CDCl$_3$
1H NMR
Solvent: CDCl$_3$
\[\text{F}_3\text{C} - \text{CO}_2\text{Me} \]

3d (\(^{13}\text{C}-\text{NMR})

Solvent: CDCl\(_3\)
$3e$ (1H NMR)

Solvent: CDCl$_3$
3e 13C NMR
Solvent: CDCl$_3$
3f (¹H NMR)
Solvent: CDCl₃
3f (13C NMR)

Solvent: CDCl$_3$
3g (1H NMR)
Solvent: CDCl₃
Sample Name: 20135601qtb-br
Data Collected on: 20135601qtb-br
Archive directory: /home/sloc/date
Sample directory: 20135601qtb-br_20140908_01
Fidfile: NOESY_01

Pulse Sequence: NOESY
Solvent: CDCl3
Date collected on: Sep 3 2014

Temp. 25.0 C / 298.1 K
Operator: sloc

Relax. delay 1.000 sec
Acq. time 0.150 sec
Width 2856.0 Hz
IR Width 2856.0 Hz
B repetitions
2 x 280 increments

OBSERVE H1, 399.6538482 MHz
DATA PROCESSING
Gauss apodization 0.069 sec
F1 DATA PROCESSING
Gauss apodization 0.048 sec
FT size 2048 x 2040
Total time 1 hr, 41 min

3g (NOESY)
Solvent: CDCl3
3h (1H NMR)
Solvent: CDCl₃
Br

3h (13C NMR)

Solvent: CDCl$_3$
S55

\[\text{CO}_2\text{Me} \]

$3_\text{H NMR}$

Solvent: CDCl$_3$
13C NMR

Solvent: CDCl$_3$
Sample Name: 20135681gtb-cf3
Data Collected on: Agilent-NMR-vwrsv400
Archive directory: /home/sloc/data
Sample directory: 20135681gtb-cf3_20140664_01
FidFile: NOESY_01
Pulse Sequence: NOESY
Solvent: CDC13
Data collected on: Sep 4 2014

Temp. 25.0 C / 298.1 K
Operator: sloc
Relax. delay 1.000 sec
Acq. time 0.150 sec
Width 4.921.3 Hz
2D Width 4.921.3 Hz
8 repetitions
2 x 256 increments
OBSEVE H1, 399.6538482 MHz
DATA PROCESSING
Gauss apodization 0.869 sec
F1 DATA PROCESSING
Gauss apodization 0.837 sec
FT size 2048 x 2048
Total time 2 hr, 9 min
3k (¹H NMR)
Solvent: CDCl₃
$3k$ (13C NMR)
Solvent: CDCl$_3$
$3^\text{m} \left(^1H \text{ NMR} \right)$
Solvent: CDCl$_3$
13C NMR

Solvent: CDCl$_3$
3\(p\) \(\left(^1H\text{ NMR}\right) \)

Solvent: CDCl\(_3\)
MeO₂C₃ uphold CO₂Me

3p (¹³C NMR)

Solvent: CDCl₃
CO_2Me

Ph

$5 \left(^1H \text{NMR} \right)$

Solvent: CDCl$_3$
5 (13C NMR)
Solvent: CDCl$_3$
$6 \left(^1H \text{ NMR} \right)$

Solvent: CDCl$_3$
$6 \left(^{13}C \text{NMR} \right)$

Solvent: CDCl$_3$
(1R,2R)-Methyl 1-phenyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)cyclopropanecarboxylate (3a)
(1R,2R)-Methyl 2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-p-tolylcyclopropanecarboxylate (3b)

Results

<table>
<thead>
<tr>
<th>Peak No.</th>
<th>Peak ID</th>
<th>Ret Time</th>
<th>Height</th>
<th>Area</th>
<th>Conc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>6.640</td>
<td>49345.270</td>
<td>615000.000</td>
<td>50.3441</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>7.557</td>
<td>43474.520</td>
<td>606592.313</td>
<td>49.6559</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>92819.789</td>
<td>1221592.313</td>
<td>100.0000</td>
</tr>
</tbody>
</table>

Results

<table>
<thead>
<tr>
<th>Peak No.</th>
<th>Peak ID</th>
<th>Ret Time</th>
<th>Height</th>
<th>Area</th>
<th>Conc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>6.750</td>
<td>164177.375</td>
<td>2098171.500</td>
<td>97.1788</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>7.873</td>
<td>4890.031</td>
<td>60911.500</td>
<td>2.8212</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>169067.406</td>
<td>2159083.000</td>
<td>100.0000</td>
</tr>
</tbody>
</table>
(1R,2R)-Methyl 1-(4-methoxyphenyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)cyclopropane-carboxylate (3c)

![Chromatogram](04-10.org)

Results

<table>
<thead>
<tr>
<th>Peak No.</th>
<th>Peak ID</th>
<th>Ret Time</th>
<th>Height</th>
<th>Area</th>
<th>Conc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>9.623</td>
<td>44988.973</td>
<td>844058.375</td>
<td>49.9452</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>12.373</td>
<td>35401.379</td>
<td>845910.875</td>
<td>50.0548</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>80390.352</td>
<td>1689969.250</td>
<td>100.0000</td>
</tr>
</tbody>
</table>

![Chromatogram](04-9.org)

Results

<table>
<thead>
<tr>
<th>Peak No.</th>
<th>Peak ID</th>
<th>Ret Time</th>
<th>Height</th>
<th>Area</th>
<th>Conc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>9.658</td>
<td>173736.938</td>
<td>3306299.250</td>
<td>96.4440</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>12.422</td>
<td>5879.554</td>
<td>121906.297</td>
<td>3.5560</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>179616.492</td>
<td>3428205.547</td>
<td>100.0000</td>
</tr>
</tbody>
</table>
(1R,2R)-Methyl 2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-(4-(trifluoromethyl)phenyl)cyclopropanecarboxylate (3d)

![Chromatogram](04-54AA.org)

Results

<table>
<thead>
<tr>
<th>Peak No.</th>
<th>Peak ID</th>
<th>Ret Time</th>
<th>Height</th>
<th>Area</th>
<th>Conc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>5.553</td>
<td>79736.586</td>
<td>739423.063</td>
<td>49.2303</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>7.050</td>
<td>61355.023</td>
<td>762544.938</td>
<td>50.7697</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>141091.609</td>
<td>1501968.000</td>
<td>100.0000</td>
</tr>
</tbody>
</table>

![Chromatogram](04-68AAAA.org)

Results

<table>
<thead>
<tr>
<th>Peak No.</th>
<th>Peak ID</th>
<th>Ret Time</th>
<th>Height</th>
<th>Area</th>
<th>Conc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>5.400</td>
<td>889776.500</td>
<td>14841171.000</td>
<td>96.5931</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>7.417</td>
<td>36571.199</td>
<td>523453.000</td>
<td>3.4069</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>926347.699</td>
<td>15364624.000</td>
<td>100.0000</td>
</tr>
</tbody>
</table>
(1R,2R)-Methyl 1-(4-fluorophenyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)cyclopropane-carboxylate (3e)

Results

<table>
<thead>
<tr>
<th>Peak No.</th>
<th>Peak ID</th>
<th>Ret Time</th>
<th>Height</th>
<th>Area</th>
<th>Conc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>4.532</td>
<td>208747.313</td>
<td>1967327.375</td>
<td>48.9368</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>5.625</td>
<td>179538.953</td>
<td>2052813.125</td>
<td>51.0632</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>388286.266</td>
<td>4020140.500</td>
<td>100.0000</td>
</tr>
</tbody>
</table>

Results

<table>
<thead>
<tr>
<th>Peak No.</th>
<th>Peak ID</th>
<th>Ret Time</th>
<th>Height</th>
<th>Area</th>
<th>Conc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>4.458</td>
<td>397386.375</td>
<td>3157529.000</td>
<td>97.0913</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>5.977</td>
<td>9145.035</td>
<td>94593.945</td>
<td>2.9087</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>406531.410</td>
<td>3252122.945</td>
<td>100.0000</td>
</tr>
</tbody>
</table>
(1R,2R)-Methyl 1-(4-chlorophenyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)cyclopropanecarboxylate (3f)

Chromatogram (01-62.org)

<table>
<thead>
<tr>
<th>Peak No.</th>
<th>Peak ID</th>
<th>Ret Time</th>
<th>Height</th>
<th>Area</th>
<th>Conc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>5.467</td>
<td>202831.969</td>
<td>2006685.750</td>
<td>49.9623</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>6.700</td>
<td>165151.688</td>
<td>2009715.125</td>
<td>50.0377</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>367983.656</td>
<td>4016400.875</td>
<td>100.0000</td>
</tr>
</tbody>
</table>

Chromatogram (01-3.org)

<table>
<thead>
<tr>
<th>Peak No.</th>
<th>Peak ID</th>
<th>Ret Time</th>
<th>Height</th>
<th>Area</th>
<th>Conc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>5.237</td>
<td>256793.281</td>
<td>2501006.500</td>
<td>97.8061</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>6.537</td>
<td>5470.327</td>
<td>56100.047</td>
<td>2.1939</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>262263.608</td>
<td>2557106.547</td>
<td>100.0000</td>
</tr>
</tbody>
</table>

S74
(1R,2R)-Methyl 1-(4-bromophenyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)cyclopropane-carboxylate (3g)

Results

<table>
<thead>
<tr>
<th>Peak No.</th>
<th>Peak ID</th>
<th>Ret Time</th>
<th>Height</th>
<th>Area</th>
<th>Conc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>7.232</td>
<td>60576.539</td>
<td>866571.813</td>
<td>49.7521</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>9.400</td>
<td>48777.621</td>
<td>875208.688</td>
<td>50.2479</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>109354.160</td>
<td>1741780.500</td>
<td></td>
<td>100.0000</td>
</tr>
</tbody>
</table>

Results

<table>
<thead>
<tr>
<th>Peak No.</th>
<th>Peak ID</th>
<th>Ret Time</th>
<th>Height</th>
<th>Area</th>
<th>Conc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>7.370</td>
<td>284587.781</td>
<td>4060744.500</td>
<td>95.5031</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>9.657</td>
<td>12635.659</td>
<td>191205.594</td>
<td>4.4969</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>297223.440</td>
<td>4251950.094</td>
<td></td>
<td>100.0000</td>
</tr>
</tbody>
</table>
(1R,2R)-Methyl 1-(3-bromophenyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)cyclopropanecarboxylate (3h)

Results

<table>
<thead>
<tr>
<th>Peak No.</th>
<th>Peak ID</th>
<th>Ret Time</th>
<th>Height</th>
<th>Area</th>
<th>Conc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>5.410</td>
<td>507967.063</td>
<td>5130262.000</td>
<td>49.4841</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>6.925</td>
<td>404073.844</td>
<td>5237237.000</td>
<td>50.5159</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>912040.906</td>
<td>10367499.000</td>
<td>100.0000</td>
</tr>
</tbody>
</table>

Results

<table>
<thead>
<tr>
<th>Peak No.</th>
<th>Peak ID</th>
<th>Ret Time</th>
<th>Height</th>
<th>Area</th>
<th>Conc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>5.383</td>
<td>439026.688</td>
<td>4229278.500</td>
<td>97.0151</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>6.860</td>
<td>13452.745</td>
<td>130121.805</td>
<td>2.9849</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>452479.433</td>
<td>4359400.305</td>
<td>100.0000</td>
</tr>
</tbody>
</table>

S76
(1R,2R)-Methyl 1-(2-bromophenyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)cyclopropanecarboxylate (3i)

Results

<table>
<thead>
<tr>
<th>Peak No.</th>
<th>Peak ID</th>
<th>Ret Time</th>
<th>Height</th>
<th>Area</th>
<th>Conc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>7.332</td>
<td>73764.633</td>
<td>1015637.125</td>
<td>49.9145</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>10.465</td>
<td>51737.223</td>
<td>1019116.188</td>
<td>50.0855</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>125501.855</td>
<td>2034753.313</td>
<td>100.0000</td>
</tr>
</tbody>
</table>

Results

<table>
<thead>
<tr>
<th>Peak No.</th>
<th>Peak ID</th>
<th>Ret Time</th>
<th>Height</th>
<th>Area</th>
<th>Conc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>7.688</td>
<td>704335.750</td>
<td>9943681.000</td>
<td>96.9136</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>10.918</td>
<td>17944.900</td>
<td>316671.375</td>
<td>3.0864</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>722280.650</td>
<td>10260352.375</td>
<td>100.0000</td>
</tr>
</tbody>
</table>
(1R,2R)-Methyl 1-(naphthalen-2-yl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)cyclopropane-carboxylate (3j)

Results

<table>
<thead>
<tr>
<th>Peak No.</th>
<th>Peak ID</th>
<th>Ret Time</th>
<th>Height</th>
<th>Area</th>
<th>Conc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>8.873</td>
<td>1061924.750</td>
<td>19054004.000</td>
<td>49.3895</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>12.700</td>
<td>767961.688</td>
<td>19525076.000</td>
<td>50.6105</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>1829886.438</td>
<td>38579080.000</td>
<td>100.0000</td>
</tr>
</tbody>
</table>

Results

<table>
<thead>
<tr>
<th>Peak No.</th>
<th>Peak ID</th>
<th>Ret Time</th>
<th>Height</th>
<th>Area</th>
<th>Conc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>8.687</td>
<td>596291.938</td>
<td>9960564.000</td>
<td>96.4901</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>12.363</td>
<td>20132.539</td>
<td>362323.688</td>
<td>3.5099</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>616424.477</td>
<td>10322887.688</td>
<td>100.0000</td>
</tr>
</tbody>
</table>
(1\textsubscript{R},2\textsubscript{R})-Methyl 1-(3,4-dichlorophenyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)cyclopropane-carboxylate (3k)

<table>
<thead>
<tr>
<th>Peak No.</th>
<th>Peak ID</th>
<th>Ret Time</th>
<th>Height</th>
<th>Area</th>
<th>Conc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>5.270</td>
<td>510356.500</td>
<td>4717506.000</td>
<td>49.9098</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>6.502</td>
<td>412098.219</td>
<td>4734558.500</td>
<td>50.0902</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>922454.719</td>
<td>9452064.500</td>
<td>100.0000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Peak No.</th>
<th>Peak ID</th>
<th>Ret Time</th>
<th>Height</th>
<th>Area</th>
<th>Conc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>5.265</td>
<td>572598.313</td>
<td>5268845.500</td>
<td>95.8538</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>6.498</td>
<td>23473.000</td>
<td>227908.391</td>
<td>4.1462</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>596071.313</td>
<td>5496753.891</td>
<td>100.0000</td>
</tr>
</tbody>
</table>
(1R,2R)-Methyl 1-(3,5-difluorophenyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)cyclopropane-carboxylate (3m)

Results

<table>
<thead>
<tr>
<th>Peak No.</th>
<th>Peak ID</th>
<th>Ret Time</th>
<th>Height</th>
<th>Area</th>
<th>Conc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>4.415</td>
<td>204051.234</td>
<td>1570528.625</td>
<td>49.2951</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>5.598</td>
<td>164095.063</td>
<td>1615441.625</td>
<td>50.7049</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>368146.297</td>
<td>3185970.250</td>
<td>100.0000</td>
</tr>
</tbody>
</table>

Results

<table>
<thead>
<tr>
<th>Peak No.</th>
<th>Peak ID</th>
<th>Ret Time</th>
<th>Height</th>
<th>Area</th>
<th>Conc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>4.422</td>
<td>480571.531</td>
<td>3714432.250</td>
<td>96.3744</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>5.610</td>
<td>17728.537</td>
<td>139735.297</td>
<td>3.6256</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>498300.068</td>
<td>3854167.547</td>
<td>100.0000</td>
</tr>
</tbody>
</table>
(R)-Dimethyl 2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)cyclopropane-1,1-dicarboxylate (3p)

Results

<table>
<thead>
<tr>
<th>Peak No.</th>
<th>Peak ID</th>
<th>Ret Time</th>
<th>Height</th>
<th>Area</th>
<th>Conc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>11.392</td>
<td>33715.301</td>
<td>1063152.250</td>
<td>49.0988</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>13.053</td>
<td>30026.555</td>
<td>1102178.125</td>
<td>50.9011</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>63741.855</td>
<td>2165330.375</td>
<td>100.0000</td>
</tr>
</tbody>
</table>

Results

<table>
<thead>
<tr>
<th>Peak No.</th>
<th>Peak ID</th>
<th>Ret Time</th>
<th>Height</th>
<th>Area</th>
<th>Conc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>11.813</td>
<td>1526.219</td>
<td>35190.750</td>
<td>2.4737</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>12.978</td>
<td>39417.293</td>
<td>1387382.375</td>
<td>97.5263</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>40943.512</td>
<td>1422573.125</td>
<td>100.0000</td>
</tr>
</tbody>
</table>
(1R,2S)-Methyl 1,2-diphenylcyclopropanecarboxylate (5)

![Chromatogram](5-87.org)

<table>
<thead>
<tr>
<th>Peak No.</th>
<th>Peak ID</th>
<th>Ret Time</th>
<th>Height</th>
<th>Area</th>
<th>Conc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>11.478</td>
<td>367557.656</td>
<td>9726735.000</td>
<td>49.8654</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>16.120</td>
<td>281591.313</td>
<td>9779263.000</td>
<td>50.1346</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>649148.969</td>
<td>19505998.000</td>
<td>100.0000</td>
</tr>
</tbody>
</table>

![Chromatogram](5-86.org)

<table>
<thead>
<tr>
<th>Peak No.</th>
<th>Peak ID</th>
<th>Ret Time</th>
<th>Height</th>
<th>Area</th>
<th>Conc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>11.522</td>
<td>348305.125</td>
<td>9299768.000</td>
<td>97.0302</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>16.327</td>
<td>6018.578</td>
<td>284638.719</td>
<td>2.9698</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>354323.703</td>
<td>9584406.719</td>
<td>100.0000</td>
</tr>
</tbody>
</table>