A Metal-free Synthesis of Diaryl-1,2-diketones by C–C Triple Bond Cleavage of Alkynones

Xuesong Wang, Guolin Cheng, Jinhai Shen, Xifa Yang, Ming-e Wei, Yadong Feng and Xiuling Cui*

Key Laboratory of Xiamen Marine and Gene Drugs, Institutes of Molecular Medicine and School of Biomedical Sciences, Huaqiao University & Engineering Research Center of Molecular Medicine, Ministry of Education, Xiamen, 361021

Corresponding author: Xiuling Cui

Tel.: +86-592-6162996. Fax: +86-592-6162996.

E-mail address: cuixl@hqu.edu.cn

Page S2-S7: Materials and Methods; Page S7-S22: the 1H NMR and 13C NMR spectra for compounds 2a-2p; Page S23: HRMS m/z (ESI) calcd for C$_{16}$H$_{14}$O$_3^{18}$O and C$_{16}$H$_{14}$O$_2^{18}$O$_2$.

List of 1H NMR and 13C NMR spectra for compounds

Page S7 1H NMR, 13C NMR of 2a
Page S8 1H NMR, 13C NMR of 2b
Page S9 1H NMR, 13C NMR of 2c
Page S10 1H NMR, 13C NMR of 2d
Page S11 1H NMR, 13C NMR of 2e
Page S12 1H NMR, 13C NMR of 2f
Page S13 1H NMR, 13C NMR of 2g
Page S14 1H NMR, 13C NMR of 2h
Page S15 1H NMR, 13C NMR of 2i
Page S16 1H NMR, 13C NMR of 2j
Page S17 1H NMR, 13C NMR of 2k
Page S18 1H NMR, 13C NMR of 2l
Page S19 1H NMR, 13C NMR of 2m
Page S20 1H NMR, 13C NMR of 2n
Page S21 1H NMR, 13C NMR of 2o
Page S22 1H NMR, 13C NMR of 2p
Page S23 HRMS m/z (ESI) calcd for C$_{16}$H$_{14}$O$_3^{18}$O and C$_{16}$H$_{14}$O$_2^{18}$O$_2$
Experimental Section

All chemicals were obtained from commercial sources and used without further purification. DMSO was dried by CaH₂. Silica gel was purchased from Qing Dao Hai Yang Chemical Industry Co. All melting points were determined on a Beijing Science Instrument Dianguang Instrument Factory XT4B melting point apparatus and uncorrected. ¹H and ¹³C NMR spectra were measured on a 400 MHz Bruker spectrometer (¹H 400 MHz, ¹³C 100 MHz), using CDCl₃ as the solvent with tetramethylsilane (TMS) as the internal standard at room temperature. HRMSESI spectra were obtained on Agilent 6450 spectrometer. IR data were recorded on a Nicolet IS10 spectrometer. The products listed below were determined by ¹H, ¹³C NMR. PE is petroleum ether (60-90 °C).

General Procedure for the Preparation of alkynones:

\[
\text{Cl} - R^1 \xrightarrow{\text{PdCl}_2(\text{PPh}_3)_2, \text{CuI}, \text{Et}_3\text{N}, \text{THF}, \text{rt}} \rightleftharpoons R^2 \quad \text{O} \quad \text{R}^1 \text{Cl} + \text{R}^2 \quad \text{O} \quad \text{R}^2
\]

To a solution of the acyl chloride (1.0 mmol) and terminal alkyne (1.1 mmol) in anhydrous THF (5 mL) under N₂ protection, was added PdCl₂(PPh₃)₂ (14 mg, 2 mol %) and CuI (7.6 mg, 4 mol %). After stirring for 1 min, Et₃N (1.5 mmol) was added and the mixture was stirred for 15 h at r.t. When the reaction was complete (Monitored by TLC), distilled H₂O was added. The mixture was extracted with CH₂Cl₂. The organic phase was collected, dried (Na₂SO₄), and concentrated. The residue was purified by column chromatography [silica gel, PE/EtOAc (50:1)].

General Procedure for the Synthesis of Diaryl-1,2-diketones 2a-2p:

A mixture of alkynones (0.5 mmol), K₂CO₃ (0.5 mmol) and H₂O/DMSO (40 µl : 2 ml) was stirred at 90 °C for 8h under oxygen atmosphere. After cooling to room temperature, water was added (5 mL). Then the aqueous solution was extracted with ethyl acetate (5 ml × 3). The organic phase was dried over anhydrous Na₂SO₄ and concentrated. The residue was purified by column chromatography [eluent: PE/EtOAc (50:1)] on silica gel to provide the desired product.

benzil (2a)

Yellow solid; ¹H NMR (400 MHz, CDCl₃): δ ppm 8.0 (d, J = 7.4 Hz, 4H), 7.66 (t, J = 7.1 Hz, 2H), 7.51 (t, J = 7.2 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃): δ ppm 194.5, 134.9, 133.0, 129.9, 129.0.
1-(4-methoxyphenyl)-2-phenylethane-1,2-dione (2b)

Yellow solid; 1H NMR (400 MHz, CDCl$_3$): δ ppm 7.97-7.93 (m, 4H), 7.63 (t, $J = 7.6$ Hz, 1H), 7.49 (t, $J = 7.8$ Hz, 2H), 6.97 (d, $J = 8.8$ Hz, 2H), 3.86 (s, 3H); 13C NMR (100 MHz, CDCl$_3$): δ ppm 194.8, 193.1, 165.0, 134.6, 133.1, 132.2, 129.8, 128.9, 126.0, 114.3, 55.6.

1-phenyl-2-(p-tolyl)ethane-1,2-dione (2c)

Yellow oil; 1H NMR (400 MHz, CDCl$_3$): δ ppm 7.95 (d, $J = 7.1$ Hz, 2H), 7.87 (d, $J = 8.1$ Hz, 2H), 7.63 (t, $J = 7.4$ Hz, 1H), 7.48 (t, $J = 7.7$ Hz, 2H), 7.29 (d, $J = 8.0$ Hz, 2H), 2.41 (s, 3H); 13C NMR (100 MHz, CDCl$_3$): δ ppm 194.7, 194.2, 146.1, 134.7, 133.0, 130.5, 129.9, 129.8, 129.7, 128.9, 21.8.

1-(4-(tert-butyl)phenyl)-2-phenylethane-1,2-dione (2d)

Yellow oil; 1H NMR (400 MHz, CDCl$_3$): δ ppm 7.98-7.96 (m, 2H), 7.91 (d, $J = 8.6$ Hz, 2H), 7.66-7.62 (m, 1H), 7.53-7.48 (m, 4H), 1.34 (s, 9H); 13C NMR (100 MHz, CDCl$_3$): δ ppm 194.7, 194.3, 159.0, 134.7, 133.1, 130.5, 129.9, 128.9, 126.0, 125.4, 35.4, 30.9.

1-(4-chlorophenyl)-2-phenylethane-1,2-dione (2e)

Yellow solid; 1H NMR (400 MHz, CDCl$_3$): δ ppm 7.97-7.91 (m, 4H), 7.67 (t, $J = 18.3$ Hz, 1H), 7.54-7.48 (m, 4H); 13C NMR (100 MHz, CDCl$_3$): δ ppm 193.8, 193.0, 141.6,
135.0, 132.8, 131.4, 131.2, 129.9, 129.4, 129.1.

1-(4-fluorophenyl)-2-phenylethane-1,2-dione (2f)

Light yellow solid; 1H NMR (400 MHz, CDCl$_3$): δ ppm 8.04-7.96 (m, 4H), 7.67 (t, J = 7.2 Hz, 1H), 7.52 (t, J = 7.6 Hz, 2H), 7.19 (t, J = 8.8 Hz, 2H); 13C NMR (100 MHz, CDCl$_3$): δ ppm 194.0, 192.7, 168.0 ($J_{C,F}$ = 256.6 Hz), 135.0, 132.8, 132.7 ($J_{C,F}$ = 9.7 Hz), 129.9, 129.0, 116.5, 116.3.

1,2-bis(4-methoxyphenyl)ethane-1,2-dione (2g)

Yellow solid; 1H NMR (400 MHz, CDCl$_3$): δ ppm 7.94 (d, J = 9.0 Hz, 4H), 6.97 (d, J = 8.9 Hz, 4H), 3.88 (s, 6H); 13C NMR (100 MHz, CDCl$_3$): δ ppm 193.5, 164.8, 132.4, 126.3, 114.3, 55.6.

1,2-di-p-tolylethane-1,2-dione (2h)

Yellow solid; 1H NMR (400 MHz, CDCl$_3$): δ ppm 7.86 (d, J = 8.2 Hz, 4H), 7.30 (d, J = 7.9 Hz, 4H), 2.43 (s, 6H); 13C NMR (100 MHz, CDCl$_3$): δ ppm 194.5, 146.0, 130.7, 130.0, 129.7, 21.9.

1-(4-(tert-butyl)phenyl)-2-(4-methoxyphenyl)ethane-1,2-dione (2i)

Yellow solid; 1H NMR (400 MHz, CDCl$_3$): δ ppm 7.92 (m, 4H), 7.51 (d, J = 8.4 Hz, 2H), 7.0 (d, J = 8.8 Hz, 2H), 3.87 (s, 3H), 1.34 (s, 9H); 13C NMR (100 MHz, CDCl$_3$) δ ppm 194.5, 193.4, 164.9, 158.8, 132.3, 130.6, 129.8, 126.2, 125.9, 114.3, 55.6, 35.3.
1-(4-fluorophenyl)-2-(4-methoxyphenyl)ethane-1,2-dione (2j)

Yellow solid; 1H NMR (400 MHz, CDCl$_3$): δ ppm 8.03-8.00 (m, 2H), 7.95 (d, $J = 8.8$ Hz, 2H), 7.18 (t, $J = 8.6$ Hz, 2H), 6.98 (d, $J = 8.8$ Hz, 2H), 3.89 (s, 3H); 13C NMR (100 MHz, CDCl$_3$): δ ppm 193.0, 192.6, 168.0, 165.2 (d, $J_{C,F} = 30.7$ Hz), 132.7 (d, $J_{C,F} = 9.7$ Hz), 132.4, 129.7, 126.0, 116.3 (d, $J_{C,F} = 22.1$ Hz), 114.4, 55.7.

1,2-bis(4-fluorophenyl)ethane-1,2-dione (2k)

Yellow solid; 1H NMR (400 MHz, CDCl$_3$): δ ppm 8.02 (m, $J = 7.0$ Hz, 4H), 7.20 (m, $J = 8.5$ Hz, 4H); 13C NMR (100 MHz, CDCl$_3$): δ ppm 192.2, 168.1 (d, $J_{C,F} = 256.9$ Hz), 132.8 (d, $J_{C,F} = 9.8$ Hz), 129.4, 116.5 (d, $J_{C,F} = 22.1$ Hz).

1-(2-methoxyphenyl)-2-phenylethane-1,2-dione (2l)

Yellow solid; 1H NMR (400 MHz, CDCl$_3$): δ ppm 8.00 (m, 1H), 7.89 (m, 2H), 7.53-7.46 (m, 3H), 7.35 (d, $J = 7.6$ Hz, 1H), 7.27 (m, 1H), 2.70 (s, 3H); 13C NMR

1-phenyl-2-((o-tolyl)ethane-1,2-dione (2m)

Light yellow solid; 1H NMR (400 MHz, CDCl$_3$): δ ppm 7.98 (m, 2H), 7.65 (m, 2H), 7.53-7.46 (m, 3H), 7.35 (d, $J = 7.6$ Hz, 1H), 7.27 (m, 1H), 2.70 (s, 3H); 13C NMR
1-(2-fluorophenyl)-2-phenylethane-1,2-dione(2n)

Yellow solid; 1H NMR (400 MHz, CDCl$_3$): δ ppm 8.07-8.04 (m, 1H), 7.98-7.96 (m, 2H), 7.68-7.61 (m, 2H), 7.54-7.50 (m, 2H), 7.36-7.32 (m, 1H), 7.15-7.10 (m, 1H); 13C NMR (100 MHz, CDCl$_3$): δ ppm 193.0, 191.9, 164.1 (d, $J_{C,F}$ = 256.6 Hz), 136.8 (d, $J_{C,F}$ = 9.1 Hz), 134.7, 132.0, 130.8, 129.8, 129.0, 125.0 (d, $J_{C,F}$ = 3.3 Hz), 122.4 (d, $J_{C,F}$ = 11.1 Hz), 116.6 (d, $J_{C,F}$ = 21.4 Hz).

1-(naphthalen-2-yl)-2-phenylethane-1,2-dione(2o)

Light yellow solid; 1H NMR (400 MHz, CDCl$_3$): δ ppm 8.42 (s, 1H), 8.11-8.09 (m, 1H), 8.03 (m, 2H), 7.97 (d, $J = 8.7$ Hz, 1H), 7.91 (t, $J = 7.2$ Hz, 2H), 7.69-7.63 (m, 2H), 7.58-7.51 (m, 3H); 13C NMR (100 MHz, CDCl$_3$): δ ppm 194.6, 136.4, 134.9, 133.5, 133.1, 132.3, 130.3, 130.0, 129.9, 129.5, 129.2, 129.0, 127.9, 127.2, 123.6.

1-phenyl-2-(thiophen-2-yl)ethane-1,2-dione(2p)

Yellow solid; 1H NMR (400 MHz, CDCl$_3$): δ ppm 8.0 (d, $J = 7.6$ Hz, 2H), 7.85-7.81 (m, 2H), 7.66 (t, $J = 7.7$ Hz, 1H); 7.52 (m, 2H), 7.19 (m, 1H); 13C NMR (100 MHz, CDCl$_3$): δ ppm 192.1, 185.6, 139.9, 136.8, 136.7, 134.8, 132.7, 130.2, 128.9, 128.8.
^{1}H NMR spectrum of 2a

^{13}C NMR spectrum of 2a
1H NMR spectrum of 2b

13C NMR spectrum of 2b
1H NMR spectrum of 2c

13C NMR spectrum of 2c
1H NMR spectrum of 2d

13C NMR spectrum of 2d
^{1}H NMR spectrum of 2e

^{13}C NMR spectrum of 2e
^{1}H NMR spectrum of 2f

^{13}C NMR spectrum of 2f
MeO^-

O

O

OMe

^1H NMR spectrum of $2g$

^{13}C NMR spectrum of $2g$
1H NMR spectrum of 2h

13C NMR spectrum of 2h
^{1}H NMR spectrum of 2i

^{13}C NMR spectrum of 2i
$\text{H NMR spectrum of } 2j$

$\text{^{13}C NMR spectrum of } 2j$
1H NMR spectrum of 2k

13C NMR spectrum of 2k
1H NMR spectrum of 2l

13C NMR spectrum of 2l
^{1}H NMR spectrum of 2m

^{13}C NMR spectrum of 2m
1H NMR spectrum of 2n

13C NMR spectrum of 2n
1H NMR spectrum of 2o

13C NMR spectrum of 2o
1H NMR spectrum of $2p$

13C NMR spectrum of $2p$
The controlled experiment was conducted involving \(\text{H}_2\text{O}^{18} \), and \(\text{C}_{16}\text{H}_{14}\text{O}_4^{18}\text{O} \) was not observed. HRMS m/z (ESI) calcd for \(\text{C}_{16}\text{H}_{14}\text{O}_4 \text{(M + Na)}^+ \) 293.0790, found 293.0787.

The controlled experiment was conducted involving \(\text{O}_2^{18} \), and HRMS m/z (ESI) calcd for \(\text{C}_{16}\text{H}_{14}\text{O}_3^{18}\text{O} \text{(M + Na)}^+ \) 295.0832, found 295.0830; HRMS m/z (ESI) calcd for \(\text{C}_{16}\text{H}_{14}\text{O}_2^{18}\text{O}_2 \text{(M + Na)}^+ \) 297.0875, found 297.0872.